26 123
發新話題
打印

我的教甄準備之路 113.1.20更新

求數列一般項

之前在https://math.pro/db/viewthread.php?tid=680&page=2#pid2434推薦大家去看數學傳播關於遞迴數列的文章,相信大家對於分式遞迴數列應該都沒問題了。
但關於數列一般項的解法其實還有很多解法,只要題目條件調整一下說不定又可以用不同的解法。
我按照我的解題策略將這些題目做個整理,我也比較了各方法之間的異同。
當然還有很多題型我並沒有收錄,考量是教甄既然沒考到這麼難的題目,準備太多難免會顧此失彼。

superlori所整理的遞迴數列筆記
https://math.pro/db/viewthread.php?tid=680&page=2#pid7465
寸絲所整理的遞迴數列筆記(第一個檔案)
https://math.pro/db/viewthread.php?tid=680&page=2#pid7653
分式遞迴數列討論
https://math.pro/db/thread-1668-1-1.html

103.1.4補充
給定數列\( {x_n} \)如下:\( \displaystyle x_1=\frac{1}{2} \),\( x_n=3x_{n-1}-2(-1)^{n-1} \),\( n=2,3,... \)。試問\( x_{101} \)是幾位數?
(95高中數學能力競賽,https://math.pro/db/thread-1770-1-1.html)

已知\( a_1=1 \),\( \displaystyle a_{n+1}=3 a_n+\frac{3^n}{\sqrt{n}+\sqrt{n+1}} \),( \( n \in N \) );則\( a_n= \)?
(100麗山高中,https://math.pro/db/viewthread.php?tid=1138&page=7#pid9513)

從這兩題或許可以看出weiye的解題策略是遇到有指數的項就先同除。
而100麗山高中的\( a_n \)係數剛好也是3,除完之後\( \displaystyle \frac{a_{n+1}}{3^n} \)和\( \displaystyle \frac{a_n}{3^{n-1}} \)係數相同,就可以用累加的方式求得\( a_n \)。

出個問題讓妳回答,題目改成\( a_{n+1}=3a_{n}+n2^n \)
(1)若按照weiye的解題策略一開始就同除\( 2^n \),那有什麼地方應該要注意的?
(2)那可不可以同除n來計算?

103.4.26補充
設兩數列\( a_1,a_2, \ldots ,a_{100} \)及\( b_1,b_2, \ldots ,b_{100} \)滿足\( \displaystyle \cases{a_{n+1}=3a_n-2b_{n+1} \cr b_{n+1}=a_{n+1}-3b_n} \),\( n=1,2, \ldots ,99 \)。已知\( a_{99}=3^{50} \),\( b_{100}=4 \dots 3^{49} \)。試求\( \Bigg[\; \matrix{a_1 \cr b_1} \Bigg]\;= \)
(103中央大學附屬中壢高中,https://math.pro/db/thread-1868-1-1.html)

103.5.6補充
給定數列\( \langle\; a_n \rangle\; \),已知\( a_1=104 \),\( \displaystyle \sum_{k=1}^n a_k=(n+3)^2a_n \),試求\( a_{100}= \)?
(103和平高中,https://math.pro/db/thread-1877-1-1.html)

104.4.25補充
已知遞迴式\( a_1=1 \),\( a_{n+1}=2a_n+n^2 \),試求出\( a_n \)的一般項。
(104台南二中,https://math.pro/db/thread-2232-1-1.html)

105.4.23補充
若數列\( \{\;a_n \}\; \)滿足\( a_1=1 \),\( \sqrt{a_n}=2 \sqrt{a_{n+1}}+\sqrt{a_n a_{n+1}} \),\( n \in N \),求數列\( \{\;a_n \}\; \)的一般項\(a_n=\)   
(105中壢高中,https://math.pro/db/thread-2486-1-1.html)

105.4.24補充
\(n\)為自然數,若\( \displaystyle a_1=\frac{1}{2} \),\( a_{n+1}=2(a_n+1) \),求數列\(  \)的第100項\(a_{100}=\)   
(105台南女中,https://math.pro/db/thread-2488-1-1.html)

105.4.26補充
數列\(\langle\; a_n \rangle\;\)滿足\( a_1=0 \),\( a_2=1 \),\( a_{n+2}-2a_{n+1}+a_n=1 \),則\( a_{106}= \)   
(105桃園高中,https://math.pro/db/thread-2489-1-1.html)

105.6.5補充
數列\( \langle\; a_n \rangle\; \)中,若\(a_1=1\),且\(a_{n+1}=3a_n-1\),則\(a_n=\)   
(105高雄餐旅大學附屬高中,https://math.pro/db/thread-2527-1-1.html)

105.6.16補充
設數列\( \langle\; a_n \rangle\; \)滿足遞迴式\( \Bigg\{\; \matrix{\displaystyle a_1=\frac{1}{3} \cr a_n=a_{n-1}+\frac{2}{n^2+3n+2},n \ge 2} \),試求\(a_n\)。
(105復興高中二招,https://math.pro/db/viewthread.php?tid=2533&page=1#pid15698)

106.9.17補充
設數列\( \{\; a_n \}\; \)的前\(n\)項和為\(S_n\),已知\(a_1=1\)且\((5n-8)S_{n+1}-(5n+2)S_n=-20n-8\),試求\( \displaystyle \sum_{k=101}^{150}\frac{1}{a_ka_{k+1}} \)之值。
(104高中數學能力競賽,https://math.pro/db/viewthread.php?tid=2466&page=2#pid15693)

109.6.15補充
數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1\)、\(\displaystyle a_{n+1}=\frac{1}{16}(1+4a_n+\sqrt{1+24a_n})\),求此數列的一般項\(a_n\)。
(109中科實中國中部,https://math.pro/db/thread-3347-1-1.html)
(111高雄女中,https://math.pro/db/thread-3624-1-1.html)

109.6.25補充
數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1,a_{n+1}=1+a_n+\sqrt{1+4a_n}(n\ge 1)\),
而數列\(\langle\;b_n\rangle\;\)定義為\(b_n=\sqrt{1+4a_n}\)。
(1)問:數列\(\langle\;b_n\rangle\;\)為何種數列?
(2)求數列\(\langle\;a_n\rangle\;\)的一般項公式。
(105高中數學能力競賽 北一區(花蓮高中)筆試一試題,https://math.pro/db/thread-2608-1-1.html)

111.3.22補充
已知數列\(a_1=1\)且\(3a_{n+1}=5a_n+\sqrt{9+16a_n^2}\)
(a)求\(a_n\)的一般式。
(b)試證對於所有的正整數\(n\),滿足\(\displaystyle \sum_{i=1}^n \frac{1}{a_i}<\frac{3}{2}\)。
(110高中數學能力競賽新北市筆試一,https://math.pro/db/thread-3612-1-1.html)

109.8.10補充
數列\(\langle\;a_n \rangle\;\)滿足\(a_1=0\)且\(\displaystyle a_n=\frac{1}{2+a_{n-1}}\)(\(n\ge 2\))。已知將\(a_n\)寫成最簡分數\(\displaystyle a_n=\frac{r_n}{s_n}\)後,數列\(\langle\;a_n \rangle\;\)會滿足一個遞迴關係式\(r_n=ar_{n-1}+br_{n-2}\)(\(n\ge 2\))。試求數對\((a,b)=\)   
(105台灣師大申請入學,http://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14)

110.8.2補充
在數列\(\langle\;a_n\rangle\;\)中,當\(1\le n\le 5\)時,\(a_n=n^2\),且對所有正整數\(n\),\(a_{n+5}+a_{n+1}=a_{n+4}+a_n\)均成立,則\(a_{110}=\)?
(110竹東高中,https://math.pro/db/thread-3533-1-1.html)

111.4.19補充
已知數列\(\)的前\(n\)項和為\(S_n\),首項\(\displaystyle a_1=\frac{1}{4}\),且滿足\(a_n+3S_nS_{n-1}=0(n\ge 2,n\in N)\),則\(\displaystyle \frac{1}{S_{2022}}=\)   
(111台中一中,https://math.pro/db/viewthread.php?tid=3621&page=2#pid23766)

設一數列\(\langle a_n \rangle\)滿足\(a_1=1\),\(a_{n+1}>a_n(n\in N)\)且\((a_{n+1})^2+(a_n)^2+1=2(a_{n+1}\cdot a_n+a_{n+1}+a_n)\)。令\(\displaystyle S_n=\sum_{k=1}^n a_k\),試求\(\displaystyle \lim_{n\to \infty}\frac{S_n}{na_n}=\)   
(111台中一中,https://math.pro/db/viewthread.php?tid=3621&page=1#pid23757)

112.4.29
已知兩數列\(\langle\;a_n\rangle\;,\langle\;b_n\rangle\;\),當\(n\in N\)時恆存在下列關係:\(\cases{a_n=3a_{n-1}+5b_{n-1}\cr b_n=a_{n-1}+7b_{n-1}}\),且\(a_0=2,b_0=1\),求一般項\(a_n\)。
(112六家高中,https://math.pro/db/thread-3737-1-1.html)

已知數列中\(\langle\;a_n\rangle\;\)中,\(a_1=1\),\(a_2=2\),\(a_{n+2}=2a_{n+1}+a_n(n\in N)\),則\(\displaystyle \sum_{k=1}^{2023}(a_{k+1}^2-a_k\cdot a_{k+2})=\)?
(112六家高中,https://math.pro/db/thread-3737-1-1.html)

112.6.13
正實數數列\(\langle\;a_n\rangle\;\)滿足遞迴關係式\(a_1=1\),\(\displaystyle a_{n+1}=a_n+\sqrt{a_n}+\frac{1}{4}\),求\(a_{99}\)的值為何?
(A)2400 (B)2401 (C)2500 (D)2501
(112花蓮縣國中小聯招,https://math.pro/db/thread-3761-1-1.html)

112.7.4
設數列\(\langle\;a_n\rangle\;\)的遞迴關係式為\(\cases{a_1=1 \cr a_n=2a_{n-1}+n}\),試求一般項\(a_n\)。
(112新竹高中代理,https://math.pro/db/thread-3765-1-1.html)

附件

求數列一般項.zip (547.9 KB)

2014-1-1 20:43, 下載次數: 16205

求遞推數列通項公式的十種策略例析.zip (144.76 KB)

2020-6-25 07:13, 下載次數: 11388

TOP

矩陣\(n\)次方

這次嘗試將解答一併附上去,所以頁數較多(18頁)。

補充資料:
國立中正大學數學系◆余文卿 教授,【數學講座】方陣的冪次方及其應用
h ttp://www.worldone.com.tw/pdFile.do?pid=1736&file=education/education_1736.pdf 連結已失效

設\(A,B\)為非零二階方陣,\(I\)表示二階的單位矩陣,\(O\)表二階的零矩陣,滿足\(\cases{A=2I+B\cr AB=O}\),若\((A+I)^8=kA+I\),其中\(k\)為實數,則\(k=\)   
(114嘉義高中二招,連結有解答https://math.pro/db/thread-2551-1-1.html)

105.4.26補充
設\( A=\left[ \matrix{1&1&1\cr0&1&1\cr0&0&1} \right] \),則\(A^{102}\)中各元總和為   
(105桃園高中,https://math.pro/db/thread-2489-1-1.html)

107.5.13補充
已知\( A=\left[ \matrix{1&0 \cr -1&2} \right] \),\( B=\left[ \matrix{0&0 \cr -1&1} \right] \),\( I=\left[ \matrix{1&0 \cr 0&1} \right] \),設\(A^8=aI+bB\),則\((a,b)\)之值為   
107全國高中聯招,https://math.pro/db/thread-2964-1-1.html

109.8.10補充
已知\(\displaystyle \frac{\pi}{8}<\theta<\frac{\pi}{4}\),\(\displaystyle sin(4\theta)=\frac{3}{5}\),且\(G=\left[\matrix{cos\theta&sin\theta \cr -sin\theta & cos\theta} \right]\),則\(G^8\)的反矩陣為何?
(104台灣師大個人申請,h ttp://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14 連結已失效)

給一個\(5\times 5\)的矩陣\(A=\left[\matrix{\displaystyle \frac{6}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{6}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{6}{5}&\frac{1}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{6}{5}&\frac{1}{5} \cr
\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{1}{5}&\frac{6}{5}} \right]\),且\(k\)為任意正整數,則\(A^k\)為   
(106台灣師大申請入學,h ttp://www.math.ntnu.edu.tw/admiss/recruit.php?Sn=14 連結已失效)

若\(\left[ \matrix{1&3 \cr 0&2}\right]^n=\left[\matrix{a_n& b_n \cr c_n&d_n} \right]\),其中\(n\)為正整數,則\(\displaystyle \frac{b_{18}}{b_9}\)之值為   
(2020TRML個人賽,https://math.pro/db/thread-3381-1-1.html)

110.1.23補充
設兩矩陣\(P,Q\)滿足\(\cases{7P+8Q=A \cr P+Q=I_2}\),其中\(A=\left[\matrix{11&-3 \cr 4&4} \right]\),\(I_2=\left[ \matrix{0&0 \cr 0&0}\right]\),若\(A^{21}=aP+bQ\),求\((a,b)\)。
(1082中山大學雙週一題第4題,http://www.math.nsysu.edu.tw/~problem/2020s/1082Q&A.htm)

110.1.31補充
\(n\in N\),\(\left[\matrix{3&0 \cr 2&1}\right]^n=\left[\matrix{a_n&b_n \cr c_n&d_n} \right]\),下列敘述何者正確?
(a)\(a_3=9\) (b)\(a_2+a_3=a_4\) (c)\(a_4+b_4=c_4+d_4\) (d)\(c_n+d_n=3\)
https://math.pro/db/thread-3398-1-1.html

114.6.5補充
已知矩陣\(X=\left[\matrix{2&1\cr 0&5}\right]\),設\(X^n=\left[\matrix{a_n&b_n\cr c_n&d_n}\right]\),其中\(n\)為正整數,請回答下列各小題。
(1)試求\(b_4\)之值。 (2)以\(n\)表示\(b_n\)。
(114成淵高中,https://math.pro/db/thread-4011-1-1.html)

110.5.5補充
矩陣\(A=\left[\matrix{cos\theta&sin\theta \cr sin\theta&-cos\theta} \right]\),求\(\displaystyle \sum_{n=1}^{100}A^n\)。
(108基隆女中,https://math.pro/db/viewthread.php?tid=3186&page=3#pid20435)

114.7.28補充
若\(\left[\matrix{\displaystyle \frac{2}{5}&\frac{1}{3}\cr\frac{3}{5}&\frac{2}{3}}\right]\Bigg\{\;\left[\matrix{\displaystyle \frac{3}{5}&\frac{4}{5}\cr\frac{4}{5}&-\frac{3}{5}}\right] \left[ \matrix{\displaystyle \frac{24}{25}&-\frac{7}{25}\cr \frac{7}{25}&\frac{24}{25}}\right]\Bigg\}\;^{114}\left[\matrix{1&4\cr 3&2}\right]=\left[\matrix{a&c\cr b&d}\right]\),求\(a+b+c+d=\)?
(114高雄中學,https://math.pro/db/thread-3962-1-1.html)

110.8.14補充
若\(\left[\matrix{-1&\sqrt{3}\cr -\sqrt{3}&-1}\right]^{100}=\left[\matrix{a&b\cr c&d}\right]\),則\(\displaystyle log_2 \frac{bc-ad}{a+b+c+d}=\)   
(2012TRML團體賽,https://math.pro/db/thread-1486-1-1.html)

111.4.2補充
若\(\left[\matrix{-\sqrt{3}&1\cr -1&-\sqrt{3}} \right]^{99}=\left[\matrix{a&b\cr c&d}\right]\),則\(\displaystyle log_4 \frac{ad-bc}{a+b-c-d}=\)?
(111樟樹實創高中,https://math.pro/db/thread-3617-1-1.html)

114.5.25補充
若\(\left[\matrix{-1&\sqrt{3}\cr -\sqrt{3}&-1}\right]^{50}=\left[\matrix{a&b\cr c&d}\right]\),則\(\displaystyle \frac{bc-ad}{a+b+c+d}=\)   
(114成德高中,https://math.pro/db/thread-4000-1-1.html)

設矩陣\(A=\left[\matrix{3&3&3 \cr 3&3&3 \cr3&3&3} \right]\),矩陣\(I=\left[\matrix{1&0&0 \cr 0&1&0 \cr 0&0&1} \right]\),若\((A+I)^4=xA+yI\),其中\(x,y\)為兩定實數,則\(x+y=\)   
(98嘉義高工,https://math.pro/db/thread-1031-1-1.html)

114.7.11補充
設三階方陣\(A=\left[\matrix{6&6&6\cr -3&-3&-3\cr -5&-5&-5}\right]\),\(I=\left[\matrix{1&0&0\cr 0&1&0\cr0&0&1}\right]\),化簡\((A+I)^{2014}=\left[\matrix{1&0&0\cr 0&1&0 \cr 0&0&1}\right]=\)   
(103全國高中聯招,連結有解答https://math.pro/db/viewthread.php?tid=1912&page=1#pid10843)

114.6.18補充
\(P=\left[\matrix{0&1&1\cr 1&0&1\cr 1&1&0}\right]\),\(I=\left[\matrix{1&0&0\cr 0&1&0\cr 0&0&1}\right]\),設\(P^n=a_nP+b_nI\),\(\forall n \in \mathbb{N}\),求\(a_n\)之一般式。
(114屏東女中,https://math.pro/db/thread-4020-1-1.html)

112.7.5補充
若\(\left[\matrix{1&3\cr 0&2}\right]^n=\left[\matrix{a_n&b_n\cr c_n&d_n}\right]\),其中\(n\)為正整數,則\(\displaystyle \frac{b_{20}}{b_{10}}\)之值為   
(112金門高中,https://math.pro/db/thread-3771-1-1.html)

112.7.15補充
設\(A=\left(\matrix{4&4\cr -1&-1}\right)\),而\(A+A^2+\ldots+A^n=\left(\matrix{2(3^n-1)&a \cr b&c}\right)\),求\(b+c=\)?
(A)\(3^n-1\) (B)\(1-3^n\) (C)\(4(3^n-1)\) (D)\(4(1-3^n)\)
(112台中市國中聯招,https://math.pro/db/thread-3775-1-1.html)

112.8.21補充
矩陣運算規則\(A=\left[\matrix{a&b\cr c&d}\right]\),\(B=\left[\matrix{p&q\cr r&s}\right]\),\(A+B=\left[\matrix{a+p&b+q \cr c+r&d+s}\right]\),\(AB=\left[\matrix{ap+br& aq+bs \cr cp+dr& cq+ds}\right]\)設\(A=\left[\matrix{1&-\sqrt{3}\cr \sqrt{3}&1}\right]\)。
(1)若\(A^3=aI_2\),其中\(a\)為實數且\(I_2=\left[\matrix{1&0\cr 0&1}\right]\),則\(a=\)   
(2)\(A+A^4+A^7+\ldots+A^{100}=\)   
(111高中數學能力競賽 第5區(屏東高中)筆試(一),https://math.pro/db/thread-3782-1-1.html)

114.5.29補充
設\(A=\left[\matrix{1&-\sqrt{3}\cr \sqrt{3}&1}\right]\),\(n\in \mathbb{N}\),\(c\in \mathbb{R}\),\(A+A^4+A^7+\ldots+A^{3n+1}=cA\),求\(c\)之值。
(114蘭陽女中二招,https://math.pro/db/thread-4003-1-1.html)
--------------------------------
110.7.25補充
特徵值重根時該怎麼辦?
THE JORDAN CANONICAL FORM
https://math.pro/db/attachment.p ... 87&t=1407797768
maxima範例程式
https://math.pro/db/viewthread.php?tid=709&page=2#pid2620

\(A=\left[\matrix{-1&-9 \cr 1&-7}\right]\),\(A=PDP^{-1}\),且\(P=\left[\matrix{3&1\cr1&0}\right]\),求\(A^n=\)   (答案以\(n\)表示,\(n\in N\))?
(101松山工農,https://math.pro/db/viewthread.php?tid=1482&page=1#pid8184)

111.7.7補充
設矩陣\(A=\left(\matrix{0&-1 \cr 1&2}\right)\),若\(A^{111}=\left(\matrix{a&b \cr c&d}\right)\),則\(a+c+d=\)?
(A)110 (B)111 (C)112 (D)113
(111台中市國中聯招,https://math.pro/db/thread-3661-1-1.html)

設矩陣\(A=\left[\matrix{-5&-4\cr 9&7}\right]\),則\(A^{51}-A^{50}+A^3-3A^2-2A+4I_2\)為下列何者?(\(I_2=\left[\matrix{1&0\cr0&1} \right]\))
(A)\(\left[\matrix{24&16\cr-36&-24} \right]\) (B)\(\left[\matrix{-24&-16\cr36&24} \right]\) (C)\(O_2\) (D)\(4I_2\)
(110全國高中聯招,連結有解答https://math.pro/db/viewthread.php?tid=3530&page=3#pid23151)

114.5.24補充
設\(A=\left[\matrix{1&-2\cr 3&-1}\right]\),計算\(A^4-2A^3+3A^2-A\)。
(114基隆市高中聯招,https://math.pro/db/thread-3999-1-1.html)

附件

矩陣n次方.zip (665.09 KB)

2016-2-23 08:03, 下載次數: 15974

TOP

當初這題的出處在
h ttp://forum.nta.org.tw/examservice/showthread.php?t=19254
之後在這篇又被問一次
h ttp://forum.nta.org.tw/examservice/showthread.php?t=48238
只是網址已經連不上,我將網頁放在附件中,有興趣的網友可以參考。

先說結論是題目打錯了,將\( \displaystyle \prod_{n=1}^{89}(1+nx^{3^{n}}) \)誤植為\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)。

\( \displaystyle \prod_{n=1}^{89}(1+nx^{3n}) \)是整數分割。要求\(x^{267}\)的係數的話
\( 267=3\cdot 89=3(x_1+x_2+\ldots+x_n) \),其中\( 1 \le x_1<x_2<\ldots<x_n \)
但整數分割有很多種而且沒有規則
\( 267=3(1+88) \) , \( (1 \cdot x^3)(88 \cdot x^{264})=88 x^{267} \)
\( 267=3(1+2+86) \) , \( (1 \cdot x^3)(2 \cdot x^6)(86 \cdot x^{258})=172 x^{267} \)
\( 267=3(13+20+25+31) \) , \( (13 \cdot x^{39})(20 \cdot x^{60})(25 \cdot x^{75})(31 \cdot x^{93})=201500x^{267} \)

附件

當初的網頁.zip (111.59 KB)

2017-2-27 11:15, 下載次數: 13240

TOP

兩根號的極值問題

110.2.20補充
若\(-3\le x\le 1\),試求\(f(x)=\sqrt{x+3}+\sqrt{1-x}\)的值域。
(109嘉義高中代理,https://math.pro/db/thread-3369-1-1.html)

設\(F_1(-4,0),F_2(4,0)\)為橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)的兩焦點,且\(A(2,2)\)在橢圓的內部。若\(P\)為橢圓上任意一點,證明\(10-2\sqrt{2}\le \overline{PA}+\overline{PF_1}\le 10+2\sqrt{2}\)。
(95高中數學能力競賽 嘉義區複賽試題一)

113.7.19補充
已知\(A(4,0),B(2,2)\)是橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)內的點,若\(M\)為橢圓上動點,則\(\overline{MA}+\overline{MB}\)的最大值為   
(113嘉科實中雙語部,https://math.pro/db/thread-3895-1-1.html)

求函數\(f(x)=\sqrt{2x^2-6x+4}+\sqrt{x^2-3x}\)的最小值,及此時的\(x\)之值。
(建中通訊解題第132期)

已知\(-1\le x \le 1\),\(\displaystyle y=\sqrt{4+\sqrt{3+\sqrt{1+x}}}+\sqrt{4+\sqrt{3+\sqrt{1-x}}}\),求\(y\)的最大值在哪兩個連續整數之間?
(建中通訊解題第146期)

設\(x,y\)為兩實數且滿足\(\sqrt{x+3}+\sqrt{y-7}=6\),若\(2x+y\)的最大值為\(M\),最小值為\(m\),求數對\(M,m\)。
(建中通訊解題第154期)

114.6.11
設函數\(f(x)=x+3+\sqrt{5-x^2}\),求\(f(x)\)的最大值及最小值。
(114彰化高中,https://math.pro/db/thread-3973-1-1.html)

114.6.11
函數\(f(x)=x^2+1+\sqrt{x^4-8x+8}\)在\(x=\)   時有最小值   
(93台南女中,https://math.pro/db/viewthread.php?tid=3491&page=2#pid22975)

111.1.31
設\(x\in R\),求\(f(x)=\sqrt{x^4-3x^2-6x+13}-\sqrt{x^4-x^2+1}\)的最大值為   
(104全國高中聯招,https://math.pro/db/thread-2252-1-1.html)

113.5.9補充
已知函數\(f(x)=\sqrt{x^4-x^2-6x+10}-\sqrt{x^4-3x^2+4}\),則\(f(x)\)的最大值為   
(113景美女中,https://math.pro/db/thread-3858-1-1.html)

111.12.17
若\(x>0\),試求函數\(f(x)=\sqrt{x^2+(log_2x)^2}+\sqrt{(x-5)^2+(log_2x-1)^2}\)的最小值?
(111高雄市高中聯招,https://math.pro/db/thread-3646-1-1.html)

114.6.5
設\(f(x)=\sqrt{x^2-x+1}+\sqrt{x^2-2x+4}\),當\(x=a\)時,\(f(x)\)有最小值\(b\),則數對\((a,b)=\)   
(114內湖高中三招,https://math.pro/db/viewthread.php?tid=4010&page=1#pid27511)

112.4.24
設\(f(x)=\sqrt{10x-x^2}-\sqrt{16x-x^2-60}\),求\(f(x)\)的最大值。
(112台南女中,https://math.pro/db/thread-3730-1-1.html)

112.4.25
已知\(\vec{a}=(6,8)\),\(\vec{b}=(\sqrt{1-sin\theta},\sqrt{sin\theta})\),其中\(0\le \theta \le \pi\),則\(\vec{a}\cdot \vec{b}\)的最大值為   
(112台北市高中聯招,https://math.pro/db/thread-3729-1-1.html)

113.5.16
設\(t\)是任意實數,試求\(y=\sqrt{4+4sint}+\sqrt{2+2cost}\)的最大值為何?
(112竹東高中,https://math.pro/db/viewthread.php?tid=3758&page=1#pid25218)

114.6.19
設直線\(3x-y=0\)上有一個動點\(P\),已知平面上有另二固定點\(A(1,-2)\)及\(B(0,-1)\),當\(P\)點的座標為\((c,d)\)時,\(\overline{PA}+\overline{PB}\)的值最小,求\(c=\)?
(A)\(-2\) (B)\(-1\) (C)\(\displaystyle -\frac{2}{3}\) (D)\(\displaystyle -\frac{1}{3}\)
(114桃園市國中聯招,https://math.pro/db/thread-4021-1-1.html)

114.6.18
空間中有兩點\(A(5,5,2),B(3,-2,1)\),另有一直線\(L\):\(\displaystyle \frac{x+1}{2}=\frac{y+1}{1}=\frac{z-2}{-2}\)。在直線\(L\)上找一點\(P\),使得\(\overline{AP}+\overline{BP}\)的值最小,此時\(P\)點坐標為   
(104新竹女中,https://math.pro/db/thread-2219-1-9.html)

112.6.6
空間中,\(A(-2,8,0)\)、\(B(3,1,4)\),\(P\)為\(y\)軸上一點,則讓\(\overline{PA}+\overline{PB}\)有最小值的\(P\)坐標為   
(112新竹女中代理,https://math.pro/db/thread-3756-1-1.html)

112.6.10
空間中兩點\(A(8,0,12),B(7,13,13)\),若\(P\)點在直線\(\displaystyle x+1=\frac{y}{2}=\frac{3-z}{-2}\)上,則\(\overline{PA}+\overline{PB}\)最小值為何?此時的\(P\)點坐標為何?
(112竹東高中,https://math.pro/db/thread-3758-1-1.html)

113.6.2
設\(A(7,6,3)\)、\(B(5,-1,2)\)與一直線\(L\):\(\displaystyle \frac{x-1}{2}=\frac{y}{1}=\frac{z-3}{-2}\),若在\(L\)上任取一點\(P\),使得\(\overline{PA}+\overline{PB}\)有最小值,求\(P\)點坐標   
(113嘉義高中,https://math.pro/db/thread-3851-1-1.html)

114.10.16
在坐標空間中,有一直線\(L\):\(\displaystyle \frac{x}{2}=\frac{y}{2}=z-1\)及兩點\(A(1,2,1),B(0,1,-1)\)。若點\(P\)在直線\(L\)上移動,求\(\overline{AP}+\overline{BP}\)的最小可能值。
(112高中數學能力競賽 臺北市(麗山高中)筆試一試題,https://math.pro/db/thread-4039-1-1.html)

113.7.6
已知空間中兩點\(A(1,2,3)\),\(B(2,1,-1)\),動點\(P(t,2t+1,2t),t\)為實數,若\(\overline{PA}+\overline{PB}\)有最小值時,此時\(t=\)   
(113彰化女中代理,https://math.pro/db/thread-3898-1-1.html)

112.6.12
\(\sqrt{2^x(2^x-8)+x(x-2)+17}+\sqrt{2^x(2^x-2)+x(x-10)+26}\)的最小值為何?
(A)5 (B)6 (C)7 (D)8
(112新北市國中聯招,https://math.pro/db/thread-3760-1-1.html)

112.8.18
設\(x,y \in R\),則\(\sqrt{(x-4)^2+(y-1)^2+(x+y-2)^2}+\sqrt{(x-4)^2+(y-2)^2+(x+y)^2}\)的最小值為   
(112文華高中代理,https://math.pro/db/thread-3764-1-1.html)

114.3.10
\(x\)、\(y\)為任意實數,定義:\(f(x,y)=\sqrt{(2x-2)^2+(2y-4)^2+(2x-y+9)^2}+\sqrt{(2x+2)^2+(2y+6)^2+(2x-y+11)^2}\)求\(f(x,y)\)的最小值   
(114南一中,https://math.pro/db/thread-3939-1-1.html)

114.5.12
\(x,y\)為實數,則\(\sqrt{(x-6)^2+(y-5)^2+(x+y-2)^2}+\sqrt{(x-8)^2+(y-2)^2+(x+y-1)^2}\)最小值為   
(114沙崙高中,https://math.pro/db/thread-3995-1-1.html)

113.3.17
已知二次函數\(y=x^2+2x-3\)的圖形與\(x\)軸交於點\(A(x_1,0)\)、\(B(x_2,0)\),其中\(x_1>x_2\)。設\(Q(2,y_0)\)為\(y=x^2+2x-3\)上的一點,在此二次函數的對稱軸上找一點\(P\),使得\(\overline{PA}+\overline{PQ}\)的值最小,則\(P\)點坐標為何?
(113嘉科實中國中部,https://math.pro/db/thread-3820-1-1.html)

113.4.12
空間中,\(A\)點坐標為\((-2,8,0)\),\(B\)點坐標為\((3,1,4)\),\(P\)點為\(y\)軸上一點,當\(\overline{PA}+\overline{PB}\)有最小值時,\(P\)點坐標為何?
【以下為學生小沂的解法】
因為\(\overline{PA}\ge 0\),\(\overline{PB}\ge 0\),故由算幾不等式可得\(\displaystyle \frac{\overline{PA}+\overline{PB}}{2}\ge \sqrt{\overline{PA}\times \overline{PB}}\)
等式成立時,\(\overline{PA}+\overline{PB}\)有最小值且發生在\(\overline{PA}=\overline{PB}\)時。
因為\(P\)點為\(y\)軸上一點,假設\(P\)點坐標為\((0,y,0)\),\(\overline{PA}+\overline{PB}\Rightarrow \sqrt{2^2+(y-8)^2}=\sqrt{3^2+(y-1)^2+4^2}\Rightarrow y=3\)
因此,\(P\)點坐標為\((0,3,0)\)。
1.請問:小沂的解法是對的嗎?若老師覺得此學生的解法錯誤,要如何協助學生釐清錯誤的迷思呢?
2.如果您正在教授「高一」的學生,想避免學生有類似上述的錯誤方式,您要如何設計一道數學題目並給出類似上面的錯誤解法,讓學生偵錯呢?透過此道數學題目,要如何協助學生釐清錯誤的迷思呢?
(113新竹女中,https://math.pro/db/thread-3829-1-1.html)

113.4.21補充
函數\(f(x)=\sqrt{2x^2-6x+9}+\sqrt{2x^2-16x+(log_3x)^2-2x\cdot log_3x+4\cdot log_3x+40}\)的最小值為   
(113文華高中,https://math.pro/db/thread-3836-1-1.html)

113.5.14補充
若函數\(f(x)=\sqrt{24-4x}+\sqrt{5x+15}\)(其中\(-3\le x \le6\))的最大值為\(M\),最小值\(m\),則數對\((M,m)=\)   
(113南湖高中,https://math.pro/db/viewthread.php?tid=3867&page=1#pid26156)

114.10.16補充
設\(f(x)=\sqrt{4-x}+\sqrt{3x+15}\),其中\(-5\le x\le 4\)。若\(f(x)\)的最小值為\(a\),最大值為\(b\),則數對\((a,b)=\)   
(112高中數學能力競賽 臺北市(麗山高中)筆試二試題,https://math.pro/db/thread-4039-1-1.html)

114.3.10補充
已知函數\(f(x)=x^2-x+\sqrt{2x^4-6x^2+8x+16}\)在\(x=a\)時有最小值\(m\),則數對\((a,m)=\)   
(114竹北高中,https://math.pro/db/viewthread.php?tid=3938&page=2#pid26751)
--------------------------------
三根號的極值問題
\(x,y\)為實數,求\( \sqrt{(x-4)^2+9}+\sqrt{(y-7)^2+1}+\sqrt{x^2+y^2} \)之最小値
(101新化高中代理,連結有解答https://math.pro/db/viewthread.php?tid=1428&page=1#pid6545)

設\(a,b\in \mathbb{R}\)且\(c=\sqrt{(a+3)^2+(b-2)^2}+\sqrt{(b-2)^2+(a-4)^2}+\sqrt{a^2+(b-5)^2}\),求\(c\)的最小值   
(114成德高中,https://math.pro/db/thread-4000-1-1.html)

114.6.24補充
設\(x,y\)為實數,則\(\sqrt{x^2+y^2}+\sqrt{4^2+(x-6)^2}+\sqrt{5^2+(y-8)^2}\)的最小值為   
(114金門高中,https://math.pro/db/thread-4023-1-1.html)
--------------------------------
四根號的極值問題
(1)\(a,b,c,d\)皆為正數,試證明不等式\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge \sqrt{(a+c)^2+(b+d)^2}\)(提示:畫圖或坐標化)
(2)試問在(1)的不等式中,等號成立的條件為何?
(3)當\(x,y\)皆為小於1的正數時,試求出\(\sqrt{x^2+y^2}+\sqrt{(1-x)^2+y^2}+\sqrt{x^2+(1-y)^2}+\sqrt{(1-x)^2+(1-y)^2}\)的最小值,以及此時的數對\((x,y)\),請詳細說明原因。
(113學年度雲嘉南區國中數學能力競試數學一試題,https://www.cysh.cy.edu.tw/p/406-1008-130371,r107.php)
--------------------------------
橢圓準線相關問題
坐標平面上有兩定點\(A(-1,0)\)、\(B(1,1)\),\(P\)為橢圓\(\displaystyle \frac{x^2}{4}+\frac{y^2}{3}=1\)上一點,則\(2\overline{PA}+\overline{PB}\)的最小值為   
(113文華高中,連結有解答https://math.pro/db/viewthread.php?tid=3836&page=3#pid25859)

在坐標平面上,若\(\Gamma\):\(\displaystyle \frac{x^2}{225}+\frac{y^2}{144}=1\)、\(A(9,0)\)、\(B(7,7)\),且動點\(P\)在\(\Gamma\)上,試求:\(5\overline{PA}+3\overline{PB}\)的最小值為。
(113嘉科實中,連結有解答https://math.pro/db/viewthread.php?tid=3842&page=1#pid26247)

在坐標平面上,\(A\)點坐標為\((8,0)\),\(B\)點坐標為\((0,6)\),\(P\)為圓:\(x^2+y^2=16\)上的動點,求\(3\overline{PA}+2\overline{PB}\)的最小值=   
(113彰化女中代理,https://math.pro/db/thread-3898-1-1.html)

附件

兩根號的極值問題.zip (657.67 KB)

2021-2-9 14:51, 下載次數: 11304

TOP

113.6.20補充
\(\displaystyle f(n)=\sum_{k=1}^n\frac{1}{(2k)(2k-1)}\),求極限\(\displaystyle \lim_{n\to \infty}f(n)=\)   
(106興大附中,連結有解答https://math.pro/db/viewthread.php?tid=2749&page=1#pid17004)
[提示]
\(\displaystyle f(n)=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\)

111.3.9補充
若\(\displaystyle \lim_{n\to \infty}\frac{(1^2+2^2+\ldots+n^2)(1^5+2^5+\ldots+n^5)}{(1^3+2^3+\ldots+n^3)(1^4+2^4+\ldots+n^4)}=\frac{b}{a}\)(\(a,b\)為整數,且\(\displaystyle \frac{b}{a}\)為一最簡分數),則\(a+b=\)?
(A)37 (B)29 (C)22 (D)19。
(101全國高中聯招,https://math.pro/db/viewthread.php?tid=1385&page=1#pid6029)

114.4.27補充
求值:\(\displaystyle \lim_{n\to \infty}\frac{(1^2+2^2+3^2+\ldots+n^2)(1^5+2^5+3^5+\ldots+n^5)}{(1^3+2^3+3^3+\ldots+n^3)(1^4+2^4+3^4+\ldots+n^4)}=\)   。(化為最簡)
(114湖口高中,https://math.pro/db/viewthread.php?tid=3969&page=1#pid27130)

112.12.16補充
求\(\displaystyle \lim_{n\to \infty}\frac{1}{n^5}\left(1^4+2^4+3^4+\ldots+n^4\right)=\)   
(112台灣師大大學個人申請入學筆試二,https://www.lib.ntnu.edu.tw/coll ... 1-ABA5-C9BFC4E09A6C)

111.4.2補充
已知數列\(\langle\;a_n\rangle\;\)中,若\(\displaystyle a_n=\frac{3}{\sqrt{n^4+4n^2}}+\frac{6}{\sqrt{n^4+16n^2}}+\frac{9}{\sqrt{n^4+36n^2}}+\ldots+\frac{3n}{\sqrt{5n^4}}\),則\(\displaystyle \lim_{n\to \infty}a_n=\)?
(111樟樹實創高中,https://math.pro/db/thread-3617-1-1.html)

113.7.8補充
設\(\displaystyle a_n=\sum_{k=1}^n \frac{1}{n}\cdot \frac{2k-1}{\sqrt{n^2+(2k-1)^2}}\),求\(\displaystyle \lim_{n\to \infty}a_n=\)   
(113竹東高中,https://math.pro/db/thread-3883-1-1.html)

111.5.6補充
求極限\(\displaystyle \lim_{n\to \infty}\frac{(\sqrt{1}+\sqrt{2}+\sqrt{3}+\ldots+\sqrt{n})^2(1^3+2^3+3^3+\ldots+n^3)}{(\root 3\of 1+\root 3\of 2+\root 3\of 3+\ldots+\root 3\of n)^3(1^2+2^2+3^2+\ldots+n^2)}\)之值為   
(111台南一中,https://math.pro/db/thread-3635-1-1.html)

111.6.11補充
求\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{k^6-k(k-1)^5}{n^6}=\)   
(104師大附中,https://math.pro/db/viewthread.php?tid=2226&page=1#pid13007)

111.6.12補充
試問\(\displaystyle \lim_{n\to \infty}\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots+\frac{1}{\sqrt{n}}\right)=\)?
(A)0 (B)1 (C)2 (D)3 (E)4
(111香山高中,https://math.pro/db/thread-3654-1-1.html)

114.4.15
試求\(\displaystyle \lim_{n\to \infty}\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\frac{1}{\sqrt{n+3}}+\ldots+\frac{1}{\sqrt{3n}}\right)=\)   
(114景美女中,https://math.pro/db/thread-3960-1-1.html)

111.6.18
\(\displaystyle \lim_{n\to \infty} \frac{1}{n^6}\sum_{k=1}^n [(n^2+nk+k^2)(n+k)^3]=\)   
(111台中女中,https://math.pro/db/thread-3656-1-1.html)

111.7.7
極限值\(\displaystyle \lim_{n\to \infty}\sum_{k=0}^n \left(\frac{k}{n}\right)^4\)為
(A)\(\displaystyle \frac{1}{2}\) (B)\(\displaystyle \frac{1}{3}\) (C)\(\displaystyle \frac{1}{4}\) (D)\(\displaystyle \frac{1}{5}\)
(111台中市國中聯招,https://math.pro/db/thread-3661-1-1.html)

114.3.24
求\(\displaystyle \lim_{n\to \infty}\frac{80}{n}\left[\left(\frac{3}{n}\right)^4+\left(\frac{8}{n}\right)^4+\left(\frac{13}{n}\right)^4+\ldots+\left(\frac{5k-2}{n}\right)^4+\ldots+\left(\frac{5n-2}{n}\right)^4\right]\)之值為何?
(113桃園陽明高中,https://math.pro/db/thread-3853-1-1.html)

113.4.12
設數列\(a_k=k^3\),試求\(\displaystyle \lim_{n\to \infty}\sum_{k=n}^{3n-1}\frac{n^2}{a_k}=\)   
(113新竹女中,https://math.pro/db/thread-3829-1-1.html)

112.4.24
設\(a_k=\sqrt{1+2+\ldots+k}\),試求\(\displaystyle \lim_{n\to \infty}\left(\frac{1}{n^2}\sum_{k=1}^n a_k\right)\)
(112台南女中,https://math.pro/db/thread-3730-1-1.html)

112.4.27
\(\displaystyle \lim_{n\to \infty}\left(\frac{\sqrt{1\times 3}+\sqrt{2\times 4}+\ldots+\sqrt{n\times(n+2)}}{n}-\frac{n}{2}\right)=\)?
(112高雄中學,https://math.pro/db/viewthread.php?tid=3727&page=4#pid24708)

112.4.29
\(\displaystyle \lim_{n\to \infty}\frac{ln \left(\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right)\ldots\left(1+\frac{n}{n}\right)\right)}{n}=\)?
(112六家高中,https://math.pro/db/thread-3737-1-1.html)

113.5.25
設\(\displaystyle a_n=\sum_{k=1}^{3n}\frac{k^2}{3n^3+k^3},n\in N\),求\(\displaystyle \lim_{n\to \infty}a_n\)。
(113南港高中,https://math.pro/db/thread-3876-1-1.html)

113.6.2
若\(\displaystyle a_n=\sum_{k=1}^{2n}\frac{4n^2}{(2n+5k)^3},n\in N\),則\(\displaystyle \lim_{n\to \infty}a_n=\)   
(113師大附中二招,https://math.pro/db/thread-3878-1-1.html)

113.6.2
求\(\displaystyle \lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^{10n}\frac{400n^2}{400n^2+(2k-1)^2}=\)   
(113嘉義高中,https://math.pro/db/thread-3851-1-1.html)

求值\(\displaystyle \lim_{n\to \infty}\left(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+3^2}+\ldots+\frac{n}{n^2+n^2}\right)=\)?
(99明倫高中,https://math.pro/db/thread-959-1-1.html)

112.5.21
計算\(\displaystyle \lim_{n\to \infty}\sum_{j=1}^{n^2}\frac{n}{n^2+j^2}\)。
(1112中山大學雙週一題 第六題)

114.4.8
設\(\displaystyle a_n=\sum_{k=1}^n \frac{n}{2n^2+3kn+k^2}\),則\(\displaystyle \lim_{n\to \infty}a_n=\)   
(114北一女中,https://math.pro/db/thread-3949-1-1.html)

114.4.29
試求\(\displaystyle \lim_{n\to \infty}\left(\frac{n}{n^2}+\frac{n}{(n+2)^2}+\frac{n}{(n+4)^2}+\frac{n}{(n+6)^2}+\ldots+\frac{n}{(3n-2)^2}\right)\)的值為   
(114蘭陽女中,https://math.pro/db/thread-3976-1-1.html)

112.5.29
試求\(\displaystyle \lim_{n\to \infty}\frac{1}{4n^2}(\sqrt{4n^2-1}+\sqrt{4n^2-4}+\sqrt{4n^2-9}+\ldots+\sqrt{4n^2-n^2})=\)
(104高雄市高中聯招,https://math.pro/db/viewthread.php?tid=2290&page=1#pid13706)
(112高雄市高中聯招,https://math.pro/db/thread-3751-1-1.html)

112.6.10
計算\(\displaystyle \lim_{n\to \infty}(\frac{1}{n}\sqrt{4-(\frac{1}{n})^2}+\frac{1}{n}\sqrt{4-(\frac{2}{n})^2}+\ldots+\frac{1}{n}\sqrt{4-(\frac{n}{n})^2})=\)?
(112竹東高中,https://math.pro/db/thread-3758-1-1.html)

114.3.18
試求\(\displaystyle \lim_{n\to \infty}\frac{3}{n^2}\left[\sqrt{4n^2-(3\times 1)^2}+\sqrt{4n^2-(3\times 2)^2}+\ldots+\sqrt{4n^2-(3\times n)^2}\right]=\)   
(114台南女中,https://math.pro/db/viewthread.php?tid=3941&page=3#pid26818)

114.5.25
試求\(\displaystyle \lim_{n\to \infty}\frac{5}{n^2}\left[\sqrt{4n^2-(2\times 1^2)}+\sqrt{4n^2-(2\times 2^2)}+\ldots+\sqrt{4n^2-(2\times n^2)}\right]=\)   
(114基隆女中,https://math.pro/db/thread-4005-1-1.html)

114.4.25
計算\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{\sqrt{4n^2-3k^2}}{2n^2}=\)   
(114彰化高中,https://math.pro/db/viewthread.php?tid=3973&page=1#pid27177)

112.6.16
試求\(\displaystyle \lim_{n\to \infty}\left[\frac{1}{\sqrt{n^2+2n}}+\frac{1}{\sqrt{n^2+4n}}+\ldots+\frac{1}{\sqrt{n^2+2n^2}}\right]=\)?
(A)\(\sqrt{2}-1\) (B)\(\sqrt{3}-1\) (D)\(2(\sqrt{2}-1)\) (D)\(2(\sqrt{3}-1)\)
(112新竹市國中聯招,https://math.pro/db/thread-3763-1-1.html)

113.7.6
\(\displaystyle \lim_{n\to \infty}\left(\frac{1}{\sqrt{n^2+2n}}+\frac{1}{\sqrt{n^2+4n}}+\ldots+\frac{1}{\sqrt{n^2+2n^2}}\right)=\)   
(113彰化女中代理,https://math.pro/db/thread-3898-1-1.html)

113.5.11補充
求\(\displaystyle \lim_{n\to \infty}\left(\frac{1}{\sqrt{n^2+3n}}+\frac{1}{\sqrt{n^2+6n}}+\frac{1}{\sqrt{n^2+9n}}+\ldots+\frac{1}{\sqrt{n^2+3n^2}}\right)=\)   
(113武陵高中,https://math.pro/db/thread-3830-1-1.html)

112.7.15
設\(\displaystyle \lim_{n \to \infty}\sum_{k=1}^n \frac{1}{\sqrt{k^2+nk+n^2}}=\ln\alpha\),則\(\alpha\)之值為何?
(A)\(\displaystyle 1+\frac{\sqrt{3}}{3}\) (B)\(\displaystyle 1+\frac{2\sqrt{3}}{3}\) (C)\(\displaystyle 1+\sqrt{3}\) (D)\(\displaystyle 1+\sqrt{2}\)
(112台中市國中聯招,https://math.pro/db/thread-3775-1-1.html)

113.4.11
112學年度分科測驗數學甲
「試問極限\(\displaystyle \lim_{n\to \infty}\frac{3}{n^2}\left(\sqrt{4n^2+9\times 1^2}+\sqrt{4n^2+9\times 2^2}+\ldots+\sqrt{4n^2+9\times (n-1)^2}\right)\)的值可用下列哪一個定積分表示?
(1)\(\displaystyle \int_0^3 \sqrt{1+x^2}dx\) (2)\(\displaystyle \int_0^3 \sqrt{1+9x^2}dx\) (3)\(\displaystyle \int_0^3 \sqrt{4+x^2}dx\) (4)\(\displaystyle \int_0^3 \sqrt{4+9x^2}dx\) (5)\(\displaystyle \int_0^3 \sqrt{x^2+9}dx\)」
請說明如何教學求解。
(113北一女中,https://math.pro/db/thread-3828-1-1.html)

113.5.5
求極限\(\displaystyle \lim_{n\to \infty}\left(\frac{(2n)!}{n!n^n}\right)^{\frac{1}{n}}\)的值?
(113新北市高中聯招,https://math.pro/db/thread-3860-1-1.html)

114.5.25
設\(\displaystyle S_n=sin^2\left(\frac{\pi}{3n}\right)+sin^2\left(\frac{2\pi}{3n}\right)+sin^2\left(\frac{3\pi}{3n}\right)+\ldots+sin^2\left(\frac{n\pi}{3n}\right)\),則\(\displaystyle \lim_{n\to \infty}\frac{S_n}{n}=\)   
(114成德高中,https://math.pro/db/thread-4000-1-1.html)
--------------------------------
夾擠定理
113.7.6
\(\displaystyle \lim_{n\to \infty}\left(\frac{1}{\sqrt{3n^2+1}}+\frac{1}{\sqrt{3n^2+2}}+\ldots+\frac{1}{\sqrt{3n^2+2n}}\right)=\)   
(113彰化女中代理,https://math.pro/db/thread-3898-1-1.html)

附件

黎曼和和夾擠定理.zip (514.67 KB)

2022-2-20 16:48, 下載次數: 8528

TOP

頭尾相加為定值

114.4.29補充
已知多項式函數\(f(x)=2x^3-3x^2+4x-2\),則\(\displaystyle \sum_{i=1}^{113}f\left(\frac{i}{113}\right)=\)   
(113武陵高中,https://math.pro/db/viewthread.php?tid=3830&page=1#pid25718)

設三次函數\(\displaystyle f(x)=x^3-\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\),求\(\displaystyle \sum_{k=1}^{2024}f\left(\frac{k}{2025}\right)\)的值。
(114台南女中,連結有解答https://math.pro/db/viewthread.php?tid=3941&page=3#pid26833)
--------------------------------
頭尾相乘為定值

113.5.14補充
試計算\(log_8(tan1^{\circ}+\sqrt{3})(tan2^{\circ}+\sqrt{3})(tan3^{\circ}+\sqrt{3})\ldots(tan29^{\circ}+\sqrt{3})\)之值為   
(101高中數學能力競賽,https://math.pro/db/thread-1503-1-1.html)
(113南湖高中,https://math.pro/db/viewthread.php?tid=3867&page=1#pid26161)

114.8.9補充
已知二角\(\angle A=25^{\circ},\angle B=20^{\circ}\),則\((1+tanA)(1+tanB)\)之值為下列何者?
(A)\(\sqrt{3}\) (B)2 (C)\(1+\sqrt{2}\) (D)\(2\sqrt{2}\) (E)3
(114香山高中二招,https://math.pro/db/thread-4035-1-1.html)

114.5.30補充
試問\(log(tan1^{\circ})+log(tan2^{\circ})+log(tan3^{\circ})+\ldots+log(tan88^{\circ})+log(tan89^{\circ})\)之值為下列何者?
(A)\(-1\) (B)0 (C)\(\displaystyle \frac{1}{2}\) (D)1
(114新北市國中聯招,https://math.pro/db/thread-4001-1-1.html)

附件

頭尾相加乘為定值.zip (316.81 KB)

2024-1-20 21:06, 下載次數: 5994

TOP

 26 123
發新話題