回覆 7# zj0209 的帖子
填充 6.
已知實數\(x,y\)滿足\(\cases{xy^2\ge 81 \cr x^2y\ge 243 \cr x\ge 1,y\ge 1}\),當\((x,y)=(p,q)\)時,\(x^3y^4\)有最小值\(m\),則\(\displaystyle \frac{m}{pq}\)的值為 。
[解答]
\( (xy^{2})^{5}\cdot(x^{2}y)^{2}=x^{9}y^{12}=(x^{3}y^{4})^{3} \)
故 \( (x^{3}y^{4})^{3}\ge81^{5}\cdot243^{2}=3^{30} \)
又 \( x,y \) 均為正數,故 \( x^{3}y^{4}\ge3^{10} \)
等式成立之條件為 \( \left\{ \begin{array}{c}
xy^{2}=81\\
x^{2}y=243
\end{array}\right.\Leftrightarrow x=9 \) 且 \( y=3 \)
故所求 \(\displaystyle \frac{m}{pq}=\frac{3^{10}}{9\cdot3}=3^{7}=2187 \)