長方形ABCD中,已知AB=4,AD=3,沿著AC將平面ABC摺起使與平面ACD夾角為60度,求此時的BD長為何?
101.5.21版主補充
長寬方別為4,3的長方形ABCD沿對角線\( \overline{AC} \)摺成\( 90^o \)的兩面角(即平面ABC與平面ACD夾\( 90^o \)),求空間中B和D的距離?
(101台中二中,
https://math.pro/db/thread-1367-1-1.html)
102.11.17版主補充
長方形ABCD中,AB=3,BC=4,現沿BD將三角形ABD折起,使平面ABD與平面BCD的夾角為60度,此時AC的距離?
出自
http://www.tovery.net/guestbook. ... &page_=&qs= 542篇
請參考h ttp://dl.dropbox.com/u/48168846/ans/ans131112.swf 連結已失效
謝謝胡孟青老師提供很棒的詳解
請參考h ttp://dl.dropbox.com/u/48168846/ans/ans131113.swf 連結已失效
110.4.26補充
在長方形\(ABCD\)中,\(\overline{AB}=3\)、\(\overline{BC}=4\),今將此長方形沿著對角線\(\overline{AC}\)折起。若折起後的半平面\(ACD\)與半平面\(ABC\)所夾的兩面角為\(\theta(0^{\circ}\le \theta \le 180^{\circ})\),則\(\overline{BD}\)的長度為
(以\(\theta\)表示)。
(110台中一中,
https://math.pro/db/thread-3506-1-1.html)
111.4.10補充
有一矩形\(ABCD\),\(\overline{AB}=2\),\(\overline{BC}=1\),將矩形沿\(\overline{BD}\)折起,使平面\(ABD\)與平面\(CBD\)的夾角為\(120^{\circ}\),試求\(\overline{AC}=\)?
(111高雄中學,
https://math.pro/db/thread-3619-1-1.html)
111.4.23補充
長方形紙片\(ABCD\)中,\(\overline{AB}=6\),\(\overline{AD}=2\sqrt{3}\),若將此長方形紙片沿\(\overline{AC}\)摺起,使\(\Delta ADC\)與\(\Delta ABC\)所夾的兩面角為\(30^{\circ}\),此時\(\angle BAD=\theta\),則\(cos\theta=\)
。
(111竹北高中,
https://math.pro/db/thread-3629-1-1.html)
112.4.27補充
有長方形紙板\(ABCD\),\(\overline{AB}=6\),\(\overline{BC}=2\sqrt{3}\)。若將沿對角線\(\overline{AC}\)摺起,使\(D\)至\(D'\)位置。由\(D'\)作平面\(ABC\)的垂線\(\overline{D'H}\),其垂足\(H\)恰好在\(\overline{AB}\)邊上,此時平面\(ABC\)與平面\(ACD'\)所夾的銳角為\(\theta\),試求\(tan\theta=\)
。
(112師大附中,
https://math.pro/db/thread-3735-1-1.html)