發新話題
打印

101台中二中

101台中二中

附上中二中計算題


請問計算第二題要怎麼算?

【註: weiye 於 101/05/21, 09:24 AM 新增加台中二中公告的試題與答案】

附件

101台中二中試題.pdf (72.2 KB)

2012-5-21 09:24, 下載次數: 8256

101台中二中答案.pdf (12.63 KB)

2012-5-21 23:26, 下載次數: 8148

TOP

2.
已知複數\( z_1=x+\sqrt{5}+yi \),\( z_2=x-\sqrt{5}+yi \),\( x,y \in R \)且\( |z_1|+|z_2|=6 \),則\( f(x,y)=|2x-3y-12| \)的最大值為?
(奧數教程 高二 第6講 複數及其運算的幾何意義)


4.
長寬方別為4,3的長方形ABCD沿對角線\( \overline{AC} \)摺成\( 90^o \)的兩面角(即平面ABC與平面ACD夾\( 90^o \)),求空間中B和D的距離?

長方形ABCD中,已知\( \overline{AB}=4 \),\( \overline{AD}=3 \),沿著\( \overline{AC} \)將平面ABC摺起使與平面ACD夾角為60度,求此時的\( \overline{BD} \)長為何?
https://math.pro/db/thread-567-1-1.html

8.
若干個正整數之和為2012,試求它們乘積的最大值。(以指數表示,不必乘開)
更多類似問題
https://math.pro/db/viewthread.php?tid=919&page=1#pid1945

計算題1.
一隻螞蟻正保持在一個正四面體的某一個頂點A上,此時它隨機選擇一個鄰近的頂點(每個鄰近的頂點被選中的機率皆為\(  \displaystyle \frac{1}{3} \)),並且在一分鐘之後走到那裡;接著它又隨機選擇一個鄰近的頂點,並在一分鐘之後走到那裡。假設這隻螞蟻一直以上述的方式在各個頂點之間走動,那麼恰在30分鐘後,它的位置恰好在一開始起步之頂點A的機率是多少呢?(以指數表示,不必乘開)

一隻螞蟻在一個正四面體的某一個頂點A之上,此時它隨機選擇一個臨近的頂點(每個臨近的頂點B,C,D被選中的機率皆為\( \displaystyle \frac{1}{3} \) ),並且在一分鐘之後走到那裡;接著它又隨機選擇一個臨近的頂點,並在一分鐘之後走到那裡。假設這隻螞蟻一直以上述的方式在各個頂點之間走動,那麼在n分鐘之後,它的位置恰好在頂點A的機率為?
(101中科實中,https://math.pro/db/thread-1318-1-2.html)

Let A,B,C, and D be the vertices of a regular tetrahedron each of whoseedges measures 1 meter. A bug, starting from vertex A,observes thefollowing rule: at each vertex it chooses one of the three edgesmeeting at that vertex, each edge being equally likely to be chosen,and crawls along that edge to the vertex at its opposite end. Let \( \displaystyle p=\frac{n}{729} \) be the probability that the bug is at vertex A when it has crawledexactly 7 meters. Find the value of n.
(1985AIME第12題,http://www.artofproblemsolving.c ... 82&cid=45&year=1985)

計算題4.
a,b,c為三角形的三邊長,證明:\( \sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}\le \sqrt{a}+\sqrt{b}+\sqrt{c} \)
http://forum.nta.org.tw/examservice/showthread.php?t=44807
(1996APMO,97中二中,99新竹實驗高級中學)
99鳳新高中,https://math.pro/db/thread-974-1-1.html

[ 本帖最後由 bugmens 於 2012-5-23 10:41 PM 編輯 ]

TOP

想請教填充第1題和計算第2,3,5題,謝謝

TOP

請參考




計算五. 可以使用偏微分下去算,但是小弟不才,只會帶原始定義。


[ 本帖最後由 Yichen 於 2012-5-22 04:54 PM 編輯 ]
衛生組長@師大附中

TOP

回復 4# Yichen 的帖子

樓上好精采,小弟來補一下,偏微分做計算 5 的方法,以下的 \( \sum = \sum_{i=1}^n \)

令誤差平方和 \( SR(\alpha, \beta ) = \sum (y_i - \alpha - \beta x_i)^2 \)

其在 \( (\alpha, \beta )= (a,b) \) 有最小值,故 \( \nabla SR\mid_{(a,b)} = 0 \)

計算其在 \( (a,b) \) 處之偏微分, \( D_1SR(a,b) = \sum -2e_i \),  \( D_2SR(a,b) = \sum (-2e_i\cdot x_i) \)

故得 \( \sum e_i = \sum x_ie_i = 0 \),由兩線性組合得 \( \sum \hat y_ie_i =0 \)

[ 本帖最後由 tsusy 於 2012-5-22 11:43 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 4# Yichen 的帖子

請教一下: 如何解釋--四面體中至四頂點等距的平面有7個
謝謝

TOP

回復 6# hugo964 的帖子

考慮該平面兩邊點數為 (2, 2) (1, 3) 兩種情況

點固定,就像算歪斜線距離的方式,平面的法向量就被固定,移動平面恰有一個。

所以有 \( \frac{C^4_2}{2} + C^3_1 = 7 \)

[ 本帖最後由 tsusy 於 2014-1-10 02:09 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 4# Yichen 的帖子

請問老師們
第5題解答中
設 f(x) 的 x 切點為 t , g(x)  的 x 切點為何可設為 -t
謝謝

TOP

回復 8# kittyyaya 的帖子

公切線,所以兩函數在兩切點的微分值相同,可得 t 的關係
網頁方程式編輯 imatheq

TOP

發新話題