引用:
原帖由 阿光 於 2012-6-27 08:10 AM 發表
填充第6題還是搞不懂,想再請教一下,謝謝
甲、乙、丙、丁、戊五位男生一起參加舞會,正巧遇到四位女姓朋友,第一支舞先由乙、丙、丁、戊四位男生各邀一位女伴共舞(即甲沒舞伴),第二支舞五位男生商議以抽籤決定女伴,但規定每位男生都不可以跟第一支舞相同舞伴(若相同則重抽),請問:第二支舞甲又沒有抽中舞伴的機率為何
。
[解答]
分子=乙丙丁戊等4人錯排=4!-4x3!+6x2!-4x1!+0!=9
分母要分2種情形:
沒有甲,即=分子=9
有甲及另外3人-->C(4,3)
此時再分2種情況:
1)甲的舞伴就是沒有抽籤中的那個男生的舞伴:此時就是3人錯排=3!-3x2!+3x1!-0!=2
2)甲的舞伴是中籤那3個男生原先任1人的舞伴C(3,1),剩下那3個男生,去選舞伴,但有2人不可以
和第1輪的舞伴一樣3!-2x2!+1! 所以 C(3,1)x(3!-2x2!+1!)=9
共有2+9=11
所以C(4,3)x11=44
即分母=9+44=53
機率=9/53