Board logo

標題: 99高中數學能力競賽 [打印本頁]

作者: richardc7    時間: 2010-11-11 22:50     標題: 99高中數學能力競賽

求\( x^2+3xy+194(x+y)+97^2=0 \)的所有整數解(x,y)

100.10.1版主補充
補上完整的題目並更改文章標題

98高中數學能力競賽
https://math.pro/db/thread-911-1-1.html
97高中數學能力競賽
https://math.pro/db/thread-919-1-1.html

100.11.2補充
99學年度高級中學數學科能力競賽決賽
連結已失效h ttp://cauchy.math.nknu.edu.tw/math/competitions/index.php

附件: 99高中數學能力競賽.rar (2011-10-1 09:21, 678.18 KB) / 該附件被下載次數 13017
https://math.pro/db/attachment.php?aid=843&k=5e0ebc2ae12e11b8c3701380c29708f7&t=1732232928

附件: 99高中數學能力競賽決賽.pdf (2011-11-2 19:49, 475.05 KB) / 該附件被下載次數 12504
https://math.pro/db/attachment.php?aid=852&k=152a380be85682013a3d6b090bc3622c&t=1732232928
作者: weiye    時間: 2010-11-12 00:19

題目:求 \(x^2+3xy+194(x+y)+97^2=0\) 的所有整數解 \((x,y)\) 。

※ 原題目有 \(=0\)。

解答:

\(x^2+3xy+2\times97(x+y)+97^2=0\)

先利用雙十字交乘法(先不考慮常數項,找出分解後 \(x,y\) 的係數,然後再調整適當的常數項)分解成如下:

\(\displaystyle\Rightarrow \left(x+97\times\frac{2}{3}\right)\left(x+3y+97\times\frac{4}{3}\right)=-97^2+97^2\times\frac{8}{9}\)

\(\displaystyle\Rightarrow \left(3x+97\times2\right)\left(3x+9y+97\times4\right)=-97^2\)

因為 \(x,y\) 為整數,所以左邊的兩個括弧都是整數,

因為 \(97\) 是質數,所以右邊的 \(-97^2\) 分解成兩整數相乘只有六種可能性,

分成六種情況解聯立方程式,可得有三組是 \(x,y\) 兩者都是整數解的,

也就是 \((x,y)=(-97,0), (-65,1024)\) 或 \((-3201,1024).\)



註:感謝老王老師於後方回覆中提醒我漏算的兩組!
作者: richardc7    時間: 2010-11-14 11:18

我懂了~謝謝瑋岳老師的指教
作者: 老王    時間: 2011-4-17 22:14

還有(-65,1024)和(-3201,1024)
作者: weiye    時間: 2011-4-17 22:44     標題: 回復 4# 老王 的帖子

感謝,馬上修改&加上漏掉的兩組!^__^
作者: bugmens    時間: 2011-10-1 10:55

若二實數a與b滿足\( a^3-3ab^2=18 \)與\( 3a^2 b-b^3=26 \),則\( a^2+b^2 \)之值為?

Let \( a,b \in R \) s.t. \( a^3-3ab^2=29 \) and \( b^3-3a^2 b=34 \). Compute \( a^2+b^2 \).
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=253206


設數列\( {a_n} \)滿足,\( a_1=3 \)且\( 2a_{n+1}=a_n^2-2a_n+4 \),\( n=2,3,4,... \),求\( \displaystyle \Bigg[\; \sum_{i=1}^{100} \frac{1}{a_i} \Bigg]\; \)之值為何?
([x]:表不大於x的最大整數)
(屏東區筆試二試題)
收錄到我的教甄準備之路 裂項相消
連結已失效h ttps://math.pro/db/viewthread.php?tid=661&page=2#pid1678
[提示]
\( 2a_{n+1}=a_n^2-2a_n+4 \) , \( 2(a_{n+1}-2)=a_n(a_n-2) \) , \( \displaystyle \frac{1}{a_{n+1}-2}=\frac{2}{a_n(a_n-2)} \)
\( \displaystyle \frac{1}{a_{n+1}-2}=\frac{1}{a_n-2}-\frac{1}{a_n} \) , \( \displaystyle \frac{1}{a_n}=\frac{1}{a_n-2}-\frac{1}{a_{n+1}-2} \)

108.5.18補充
求\(\displaystyle \frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\ldots\)之值。
(嘉義區複賽筆試二試題)


拋物線\( y=x^2 \)上的兩點P、Q,在P、Q兩點的切線設為\( L_1、L_2 \),如果\( L_1、L_2 \)互相垂直,試證明:\( L_1 \)與\( L_2 \)的交點落在準線上。
台南區筆試二試題
其他類似題目
https://math.pro/db/thread-723-1-1.html


104.7.5補充
已知\( \alpha>0 \),且\( \root{3} \of{2+\sqrt{\alpha}}+\root{3} \of{2-\sqrt{\alpha}} \)為一正整數,求\( \alpha= \)?
(104新北市高中聯招,https://math.pro/db/thread-2279-1-1.html)


108.5.18補充
將長與寬分別為\(a,b(a>b)\)的長方形紙張\(ABCD\)沿著\(AC\)對摺,求對摺後的\(B\)點與\(D\)點的距離。
(嘉義區複賽筆試二試題)
對摺到同一平面上

將一塊邊長\(\overline{AB}=a\)公分\((a>0)\)、\(\overline{BC}=b\)公分\((b>0)\)的長方形鐵片\(ABCD\)沿對角線\(\overline{BD}\)對摺後豎立,使得平面\(ABD\)與平面\(CBD\)垂直,則\(A\)、\(C\)兩點(在空間)的距離\(\overline{AC}=\)   
(107松山工農,https://math.pro/db/thread-2972-1-2.html\)
豎立成\(90^{\circ}\)
作者: mandy    時間: 2012-2-29 22:05     標題: 99北市學科能力競賽題

1. 設x,y,z,w 是四個不全為0的實數, 則(xy+2yz+zw)/(x^2+y^2+z^2+w^2)的最大值為______。Ans: [sqrt(2)+1]/2

2. 設甲乙丙三人共同負責12/1到12/10這10天中任意5天的工作,可以一人單獨值班,也可以兩人或三人一起值班,若
   確定甲單獨在12/1值班,而乙確定在12/10值班,則他們三人共有____ 不同的值班安排方式。  Ans:76832
作者: weiye    時間: 2012-2-29 22:47     標題: 回復 1# mandy 的帖子

第 1 題:

設 \(0\leq b\leq1, 0\leq c\leq1\),

由算幾不等式,可得

\(x^2 + by^2 \geq 2 \sqrt{b}\cdot xy\)

\((1-b)y^2+cz^2 \geq 2 \sqrt{(1-b)c}\cdot yz\)

\((1-c)z^2 + w^2 \geq 2 \sqrt{(1-c)}\cdot zw\)


取 \(b,c\) 滿足 \(\displaystyle\frac{\sqrt{b}}{1} = \frac{\sqrt{(1-b)c}}{2} = \frac{\sqrt{1-c}}{1}\)

\(\displaystyle\Rightarrow b=\frac{(1-b)c}{4}=1-c\)

解得 \(b=3-2\sqrt{2}=(\sqrt{2}-1)^2,c=2(\sqrt{2}-1)\)


將滿足此條件的 \(b,c\) 帶入最上方列的三個不等式,再將三式相加,可得

\(\displaystyle x^2+y^2+z^2+w^2\geq 2(\sqrt{2}-1)xy+4(\sqrt{2}-1)yz+2(\sqrt{2}-1)zw\)

\(\displaystyle\Rightarrow \frac{xy+2yz+zw}{x^2+y^2+z^2+w^2}\leq\frac{1}{2(\sqrt{2}-1)}=\frac{\sqrt{2}+1}{2}\)

ps. 這招是之前在某篇PO文裡看老王老師跟 bugmens 老師有用過的,但是一時忘了到底是哪一篇PO文。
作者: weiye    時間: 2012-2-29 22:59     標題: 回復 1# mandy 的帖子

第 2 題:

先從 12/2 到 12/9 這八天中選出另外要輪值的三天,取法有 \(C^8_3\) 種



12/1 甲單獨值班,只有一種排班法,



對於另外選出來的三天中的每一天,三人都可以「參加」或「不參加」值班,但不可以三人都不參加,

所以這三天的每一天都有 \(2^3-1=7\) 種輪值的方法,



12/10 已知乙一定要值班,另兩人可以選擇「參加」或「不參加」值班,因此這天有 \(1\times2\times2=4\) 種排班法,



因此,所求=\(C^8_3\cdot1\cdot7^3\cdot4=76832\) 種。
作者: bugmens    時間: 2012-3-1 18:52

\( x,y,z \)為正實數,則\( \displaystyle \frac{xy+2yz}{x^2+y^2+z^2} \)的最小值為?
(奧數教程 高一 第6講 函數的最大值和最小值)
(100臺北市陽明高中,https://math.pro/db/thread-1130-1-2.html)


設\( x,y,z,w \)是非零實數,求\( \displaystyle \frac{xy+2yz+zw}{x^2+y^2+z^2+w^2} \)的最大值
(奧數教程 高一 第6講 函數的最大值和最小值)


圖片附件: 奧數教程高一第6講函數的最大值和最小值.gif (2012-3-1 18:52, 46.77 KB) / 該附件被下載次數 10247
https://math.pro/db/attachment.php?aid=947&k=38fea257f63cf0fb851494f4c657e204&t=1732232928


作者: Pacers31    時間: 2012-10-27 23:06     標題: 第三區(新竹高中)筆試(二)

\(\sqrt{1-x}=2x^2-1+2x\sqrt{1-x^2}\)
求解x
我用了兩次平方消去了所有根號得
\(64x^6-128x^4+80x^2-15=0\)
確實可以解出解答\(x=\sqrt{10-2\sqrt{5}}/4\)
但這麼做也會多出其他根必需代回原式檢驗...
而且上式因式分解也不容易一眼看出如何分解
想請教大家有沒有其他更好的解法?
作者: bugmens    時間: 2012-10-28 12:13

你可以用\( x=cos \theta \)替換掉
類似題目請見
https://math.pro/db/thread-21-1-3.html

101.1.1補充
已知有A,B,C三件商品,其價格總和是100元,且每一件商品的價格均為正整數。若一件商品A比二件商品B貴,三件商品B比四件商品C貴,三件商品C比一件商品A貴,則商品A的價格為?

方程式\( \sqrt{1-x}=2x^2-1+2 \sqrt{1-x^2} \)的解\( x= \)

附件: 99高中數學能力競賽新竹區試題.zip (2013-1-1 06:59, 1.82 KB) / 該附件被下載次數 8316
https://math.pro/db/attachment.php?aid=1491&k=ee02a352ee43304f78dd0b2c7922dd13&t=1732232928
作者: tsusy    時間: 2012-10-28 17:03     標題: 回復 7# Pacers31 的帖子

99 附中填充 4 也是利用同樣的代換

https://math.pro/db/viewthread.php?tid=935&page=1#pid2021
作者: Pacers31    時間: 2012-10-28 22:50

非常感謝!
我忽略了 \(\sqrt{1-x^2}\) 還有個自然條件 \(x\in[-1,1]\)
作者: Exponential    時間: 2019-7-25 15:14

請問上面答案只有一組嗎,我的算法多出好幾組,不知道哪裡出錯了

圖片附件: IMG_20190725_151252.jpg (2019-7-25 15:14, 237.37 KB) / 該附件被下載次數 4459
https://math.pro/db/attachment.php?aid=5223&k=3960f602e24bf5c29bcfda7896dc6df0&t=1732232928


作者: Lopez    時間: 2019-7-26 10:23     標題: 回復 15# Exponential 的帖子

√( 1 - cos²θ )  = |sin θ|




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0