引用:
原帖由 eggsu1026 於 2011-6-19 09:53 PM 發表
這題我在考完後,吃麵完才想到怎麼做!
我覺得我的解法比上面漂亮多了,所以提出來分享一下!
將分子分母同除以y^2,將x/y、z/y 視為兩個正數 a、b
則改成求 (a+2b)/(a^2+b^2+1) 之最大值
這時 (a,b) 可視為第一象限的點 (a,b ...
這方法也很不錯!!!
只是高中數學競賽曾經出現過型如:
\(\displaystyle x,y,z,t \)都是正實數,求
\(\displaystyle \frac{xy+2yz+zt}{x^2+y^2+z^2+t^2} \)的最大值,
我是用bugmens大大所PO的方法去處理的。