發新話題
打印

101文華高中(含計算題)

回復 79# nanpolend 的帖子

填充 7
將一列\(n\)(\(n\ge 2\))的小方格中最左邊的黑棋向右移動,每次移動1或2格,直至最右邊的小方格為止。假設由最左移至最右有\(a_n\)種移動方法,每種移動方法的機會均等,「移動次數」的期望值為\(E_n\),求數對\((a_7,E_7)\)為   
●○○○○○○
[解答]
\( a_n \) 滿足遞迴式 \( a_n+2 =a_{n+1} + a_n \)

而 \( E_n \) 也可以遞迴 \( E_{n+2} = \left( a_{n+1}E_{n+1} + a_n E_n \right) / a_{n+2} +1 \)

可改寫為 \( a_{n+2} E_{n+2} = a_{n+1}E_{n+1} + a_n E_n + a_{n+2} \)

\( \{a_n\} = \{1,1,2,3,5,8,13 \} \), \( a_n E_n = \{ 0,1,3,7,15,30,58 \} \)

而 \(\displaystyle \{E_n\} = \{ 0,1,\frac32, \frac73, \frac{15}5, \frac{30}{8}, \frac{58}{13} \} \)
網頁方程式編輯 imatheq

TOP

回復 80# nanpolend 的帖子

令 \( \angle B \) 的分角線為  L, A 對 L 的對稱點為 \( A' \), \( \overline{AA'} \) 和 L 的交點為 H

不難發現 \( \triangle ABH \simeq \triangle A'BH \) 或是 \( \triangle ABA' \) 是等腰三角形

故 \( \angle ABH =\angle A'BH \) 因此 \( A' \) 必在射線 BC 上
網頁方程式編輯 imatheq

TOP

回復 15# weiye 的帖子

找想算出通項,可是卻萛不出\( (k-1)(-1)^n+(k-1)^n \),可否麻煩老師幫我看看那裏算錯了.謝謝‧

\( a_n+a_{n-1}=k(k-1)^{n-1} \)

\( \displaystyle \frac{a_n}{k}=-\frac{a_{n-1}}{k}+(k-1)^{n-1} \)

令\(\displaystyle b_n=\frac{a_n}{k}\),則\(b_n=-b_{n-1}+(k-1)^{n-1}\)

\( \displaystyle b_n+\frac{1}{-k}(k-1)^n=-[b_{n-1}+\frac{1}{-k}(k-1)^{n-1}] \)

\( \displaystyle b_n+\frac{1}{-k}(k-1)^n=[b_1+\frac{1}{-k}(k-1)](-1)^{n-1} \),而\( b_n=1 \)

\( \displaystyle b_n=\frac{1}{k}(k-1)^n+[1+\frac{1}{-k}(k-1)](-1)^{n-1}=\frac{1}{k}(k-1)^n+\frac{1}{k}(-1)^{n-1}=\frac{1}{k}[(k-1)^n+(-1)^{n-1}] \)

\(a_n=kb_n=(k-1)^n+(-1)^{n-1}\)

TOP

回復 83# martinofncku 的帖子

https://math.pro/db/viewthread.php?tid=499&page=1#pid658

注意 weiye 老師所回紅字,也就是 \( a_1 + a_2 \) 該式並不成立

因此往回推不能推到底,如果沒有其它錯誤的話

應修正成回推至 \( b_2 \) 或 \( a_2 \) 也就是 \( n=3 \), \( a_3+a_2 = k(k-1)^2 \)

再算出 \( a_2 = k(k-1) \) ,以之代入

即以下

\( \displaystyle b_{n}-\frac{1}{k}(k-1)^{n}=\left[b_{2}-\frac{(k-1)^{2}}{k}\right]\cdot(-1)^{n-2} \)

\( \displaystyle b_{n}=\frac{1}{k}(k-1)^{n}+\left[\frac{k(k-1)}{k}-\frac{(k-1)^{2}}{k}\right](-1)^{n-2} \)

\(  a_{n}=(k-1)^{n}+(-1)^{n}\cdot(k-1) \)
網頁方程式編輯 imatheq

TOP

第14題
空間中,四面體\(A-BCD\),\(\overline{AB}=\overline{CD}=6\),\(\overline{AC}=\overline{AD}=\overline{BC}=5\),\(\overline{BD}=7\),求四面體\(A-BCD\)的體積為   
[解答]
請賜教
https://www.dropbox.com/s/2bdds01n5jolmui/%E6%96%87%E8%8F%AF14%E9%A1%8C.jpg?m

TOP

回復 85# sstranger 的帖子

第 14 題
空間中,四面體\(A-BCD\),\(\overline{AB}=\overline{CD}=6\),\(\overline{AC}=\overline{AD}=\overline{BC}=5\),\(\overline{BD}=7\),求四面體\(A-BCD\)的體積為   
[解答]
另解,僅供參考。

多喝水。

TOP

回復 75# weiye 的帖子

為何最後一行要除以 2  而不用 3除以3的商數1 就好了  除以2有何目的
感覺上不是如果最後一行是 7除以3=2....1  最後  a2就是2了嗎?

TOP

回復 87# YAG 的帖子

題目有要求 \(0\leq a_2<2\)  (\(0\leq a_i<i\)),

所以 \(a_2\) 不可能是 \(3\),只有可能是 \(0\) 或 \(1\)。

不過如你所說,解讀成上一行的「除以3的商數1」也可以啦。

多喝水。

TOP

回復 86# weiye 的帖子

比我的簡單多了,感謝

TOP

引用:
原帖由 YAG 於 2013-4-12 06:19 PM 發表
為何最後一行要除以 2  而不用 3除以3的商數1 就好了  除以2有何目的
感覺上不是如果最後一行是 7除以3=2....1  最後  a2就是2了嗎?
因為題目出的是真分數,所以 \(a_2\) 真的就 用倒數第二行除以3的商數1 就可以了~

如果把題目改為假分數,那除以 2 就有目的了。

例如:\(\displaystyle\frac{30}{7} = a_1+\frac{a_2}{2!}+\frac{a_3}{3!}+\frac{a_4}{4!}+\frac{a_5}{5!}+\frac{a_6}{6!}+\frac{a_7}{7!}\)

   其中 \(a_1\in\mathbb{N}\) 且 \(0\leq a_i<i,\) for \(i=2,3,4,5,6,7\)

則解答: \(\displaystyle\frac{30}{7}=\frac{30\times6!}{7!}=\frac{21600}{7!}\)

        \(\displaystyle=\frac{7\times3085+5}{7!}\)

        \(\displaystyle=\frac{3085}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{6\times514+1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{514}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{5\times102+2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{102}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{4\times25+2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{25}{3!}+\frac{2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{3\times 8+1}{3!}+\frac{2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=\frac{8}{2!}+\frac{1}{3!}+\frac{2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle\frac{2\times4+0}{2!}+\frac{1}{3!}+\frac{2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

        \(\displaystyle=4+\frac{0}{2!}+\frac{1}{3!}+\frac{2}{4!}+\frac{2}{5!}+\frac{1}{6!}+\frac{5}{7!}\)

所以 \(a_1=4, a_2=0, a_3=1, a_4=2, a_5=2, a_6=1, a_7=5\)

多喝水。

TOP

發新話題