6.
設x,y為實數,且滿足\( x^2+xy+y^2=6 \),若\( x^2+y^2 \)的最大值為M,最小值為m,試求M+m=?
(A) 10 (B) 12 (C) 14 (D) 16
\( x,y \in R \),若\( x^2+xy+y^2=1 \),則\( x^2+y^2 \)之最大值?\( x^2+y^2 \)之最小值?
(高中數學101 P69)
7.
若\( n=1+2 \cdot 2!+3 \cdot 3!+...+50 \cdot 50! \)則n除以50的餘數為
(A) 13 (B) 23 (C) 29 (D) 49
試求\( 1! \times 1+2! \times 2+...+90! \times 90+91! \times 91 \)除以2002之餘數?
(200TRML個人賽)
2.
化簡\( \displaystyle cos \frac{6 \pi}{7}-cos \frac{5 \pi}{7}+cos \frac{4 \pi}{7} \)的值為?
\( \displaystyle cos \frac{\pi}{7}-cos \frac{2 \pi}{7}+cos \frac{3 \pi}{7} \)
(100松山工農,
https://math.pro/db/thread-1137-1-1.html
IMO 1963,
http://www.imo-official.org/year_info.aspx?year=1963)
112.7.27補充
求\(\displaystyle sin\frac{2\pi}{7}+sin\frac{4\pi}{7}-sin\frac{\pi}{7}=\)
。
(112東石高中,
https://math.pro/db/thread-3778-1-1.html)
3.
設\( f(x)=x^5+x^4+x^3+x^2+x+1 \),試求\( f(x^6) \)除以\( f(x) \)所得的餘式為?
設多項式\( f(x)=x^5+x^4+x^3+x^2+x+1 \),則\( f(x^{12}) \)除以\( f(x) \)所得到的餘式為何?
(94台南縣國中聯招,
http://www.shiner.idv.tw/teachers/viewtopic.php?f=46&t=1770)
2011.6.29補充
設\( f(x)=x^{2005}+x^{2004}+...+x+1 \),試求\( f(x^{2006}) \)除以f(x)所得的餘式?
(94高中數學能力競賽 南區(高雄區) 筆試一試題,
104.5.2補充
設多項式\( f(x)=x^{2015}+x^{2014}+\ldots+x+1 \),則試求\( f(x^{2016}) \)除以\( f(x) \)所得的餘式為。
(104桃園高中,
https://math.pro/db/thread-2238-1-1.html)
4.
設\( f(x)=x^3+2x^2-3x-1 \),\( g(x)=x^4+3x^3-x^2-5x+2 \),且α,βγ為\( f(x)=0 \)之三根。試求\( g(\alpha) \cdot g(\beta) \cdot g(\gamma) \)之值?
(96師大附中,
98中崙高中,
https://math.pro/db/thread-807-1-1.html)
8.
若\( \displaystyle \frac{3}{4}\le x \le 2 \)且\( f(x)=\sqrt{2-x}+\sqrt{4x-3} \),則當x=?時\( f(x) \)有最大值為多少?
\( y=\sqrt{3-x}+\sqrt{5x-4} \)求最大值和最小值?
(埔里高工,
http://forum.nta.org.tw/examservice/showthread.php?t=25127
97南一中,
http://forum.nta.org.tw/examservice/showthread.php?t=47375)
求函數\( f(x)=\sqrt{x-3}+\sqrt{12-3x} \)的值域?
(98南港高工,
http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&t=420)
另外找一題三個根號的讓各位算看看
求函數\( y=\sqrt{x+27}+\sqrt{13-x}+\sqrt{x} \)的最大和最小值?
(2009大陸高中數學競賽)
104.4.12補充
設\( \displaystyle \frac{7}{3}\le x \le \frac{9}{2} \),\( f(x)=\sqrt{3x-7}+2\sqrt{9-2x} \),則\( f(x) \)最大值為。
(104台中女中,
https://math.pro/db/thread-2208-1-1.html)