綜合7
\(\alpha,\beta\)為兩複數,滿足\(\beta^2-2\alpha \beta+4\alpha^2=0\),且\(|\;\alpha-\beta|\;=2\sqrt{3}\),若\(\alpha,\beta\)在複數平面上所代表的點為\(A,B\),而\(O\)是複數平面的原點,則\(\Delta OAB\)的面積為 。
[解答]
先備知識:
\(a,b,c\)三複數構成正三角形的充要條件為
\(\displaystyle a^2+b^2+c^2=ab+bc+ca \)
(Alfors第一章習題)
所以題目條件
\(\displaystyle \beta^2-2\alpha\beta+4\alpha^2=0 \)
可以改成
\(\displaystyle (2\alpha)^2+\beta^2+0^2=(2\alpha)\beta+\beta\times0+0\times(2\alpha) \)
故\(\displaystyle (2\alpha),\beta,0 \) 構成正三角形