選擇題7
若\(n=1+2\cdot 2!+3\cdot 3!+\ldots+50\cdot 50!\)則\(n\)除以50的餘數為
(A)\(13\) (B)\(23\) (C)\(29\) (D)\(49\)
[解答]
∵\(n\cdot n!=(n+1)!-n!\)
∴\(n=1+2\cdot 2!+3\cdot 3!+\ldots+50\cdot 50!=1+(3!-2!)+(4!-5!)+\ldots+(51!-50!)=51!-1\)
故可知\(n\equiv -1\pmod{50}\)
則\(n\)除以\(50\)的餘數為\(49\)
綜合題1
\(x^{20}+1\)除以\((x^2+1)(x^4-4)\)的餘式為 。
[解答]
令\(f(x)=x^{20}+1\)、\(g(x)=x^{10}+1\),則\(f(x)=g(x^2)\)
則\(g(x)=(x+1)(x^2-4)Q(x)+ax^2+bx+c=(x+1)(x+2)(x-2)Q(x)+ax^2+bx+c\)
由餘式定理可知
\(\cases{g(-1)=2\Rightarrow a-b+c=2\cr g(2)=2^{10}+1\Rightarrow 4a+2b+c=1025 \cr g(-2)=(-2)^{10}+1 \Rightarrow 4a-2b+c=1025}\Rightarrow a=341,b=0,c=-339\)
故可知\(g(x)=(x+1)(x^2-4)Q(x)+341x^2-339\)
∴\(f(x)=g(x^2)=(x^2+1)(x^4-4)Q(x^2)+341x^4-339\)
故所求餘式為\(341x^4-339\)