發新話題
打印

111高雄中學

推到噗浪
推到臉書
引用:
原帖由 BambooLotus 於 2022-4-10 00:06 發表
確定沒抄錯,雖然考試有點小計算錯誤
不過我是用堪根說明有一根在1~2之間
似乎沒給分就是了
那#1確定題目沒有抄錯?

TOP

回復 12# Ellipse 的帖子

利用\(\frac{a^2}{a+1}=\frac{(a+1)^2}{a+1}-\frac{2(a+1)}{a+1}+\frac{1}{a+1}\)
利用等比級數+頭尾相加,不知是否可以求出正解
考試有點當機所以沒算出來

*試算一下頭尾相加部分似乎真的有問題

[ 本帖最後由 BambooLotus 於 2022-4-10 01:05 編輯 ]

TOP

回復 5# Ellipse 的帖子

我印象中題目是 k = 1 到 2022

TOP

回復 12# Ellipse 的帖子

BambooLotus 老師的數據應該都沒錯,我除了打下來以外,也有跟幾位朋友核對過。

TOP

7.
試求\(\displaystyle \sum_{n=1}^{2022}(-1)^n \frac{n^2+n+1}{n!}=\)?
[提示]
\(\displaystyle \sum_{n=1}^{2022}(-1)^n \frac{n^2+n+1}{n!}=\sum_{n=1}^{2022}(-1)^n\left(\frac{n}{(n-1)!}+\frac{n+1}{n!}\right)\)

Evaluate \( \displaystyle \sum_{n=1}^{1994} \Bigg(\; (-1)^n \cdot \Bigg(\; \frac{n^2+n+1}{n!} \Bigg)\; \Bigg)\; \).
(Canada National Olympiad 1994,https://artofproblemsolving.com/ ... a_national_olympiad)

試求出下列級數之值:\(\displaystyle \sum_{n=1}^{2021}(-1)^n \frac{n^2+n+1}{n!}\)
(110高中數學能力競賽第五區筆試二,https://math.pro/db/thread-3612-1-1.html)
我的教甄準備之路 裂項相消,https://math.pro/db/viewthread.php?tid=661&page=2#pid1678

9.
有一矩形\(ABCD\),\(\overline{AB}=2\),\(\overline{BC}=1\),將矩形沿\(\overline{BD}\)折起,使平面\(ABD\)與平面\(CBD\)的夾角為\(120^{\circ}\),試求\(\overline{AC}=\)?

其他相關題目,https://math.pro/db/viewthread.php?tid=567&page=1#pid846

在長方形\(ABCD\)中,\(\overline{AB}=3\)、\(\overline{BC}=4\),今將此長方形沿對角線\(\overline{AC}\)折起。若折起後的半平面\(ACD\)與半平面\(ABC\)所夾的兩面角為\(\theta\)(\(0^{\circ}\le \theta \le 180^{\circ}\)),則\(\overline{BD}\)的長度為   (以\(\theta\)表示)。
(110台中一中,https://math.pro/db/thread-3506-3-1.html)


12.
設相異三平面\( E_1 \):\( a_1 x+b_1 y+c_1 z=d_1 \),\( E_2 \):\( a_2 x+b_2 y+c_2 z=d_2 \),\( E_3 \):\( a_3 x+b_3 y+c_3 z=d_3 \)
兩兩相交於一直線且三交線互相平行,令
\( \Delta=\Bigg\vert\; \matrix{a_1 & a_1 & c_1 \cr a_2 & b_2 & c_2 \cr a_3 & b_3 & c_3} \Bigg\vert\; \),\( \Delta_x=\Bigg\vert\; \matrix{d_1 & a_1 & c_1 \cr d_2 & b_2 & c_2 \cr d_3 & b_3 & c_3} \Bigg\vert\; \),\( \Delta_y=\Bigg\vert\; \matrix{a_1 & d_1 & c_1 \cr a_2 & d_2 & c_2 \cr a_3 & d_3 & c_3} \Bigg\vert\; \),\( \Delta_z=\Bigg\vert\; \matrix{a_1 & a_1 & d_1 \cr a_2 & b_2 & d_2 \cr a_3 & b_3 & d_3} \Bigg\vert\; \),
請證明:\( \Delta=0\)且\(\Delta_x,\Delta_y,\Delta_z \)至少一個不為0

https://math.pro/db/viewthread.php?tid=1116&page=3#pid4748

TOP

這邊提供小弟在考場有寫的幾題答案
有些題目 bugmens老師已經貼出詳解和出處 小弟就不寫上來了

3. \(\displaystyle \frac{2}{3}<m<\frac{5}{3}\)

5.\(8\)

8.\(\displaystyle \frac{5}{12}\)(約分約錯...沒救.)

10(2). \(\displaystyle E(X)=\frac{1}{p}\ , \ Var(X)=\frac{1-p}{p^2}\)

11. 假設直線為\(\displaystyle y=mx+k\),\(f(x)\)的首項係數為\(p\)
可以假設\(\displaystyle f(x)=p(x-a)(x-b)(x-c)+mx+k\),二次微分解反曲點即可

13. \(\displaystyle \frac{7}{30}\)

另外想請問 15 16

[ 本帖最後由 satsuki931000 於 2022-4-10 19:50 編輯 ]

TOP

第一題沒抄錯題目,我一直覺得我那題應該寫得出來,但我寫了20分鐘還是沒結果...

TOP

引用:
原帖由 Ellipse 於 2022-4-9 23:48 發表

還有那個#14 不知道數據有沒有抄錯....
如果沒有錯的話,最後就是要解2^x+3^(1/x)=5
有一解為x=1,另一解大於1(用電腦算出估計值約1.58496.......)
另一解是無法手算出來的...
難道可以允許考生在考試時按計算機?
喔 ...
我想另一根應該是log_2 3 考場寫得時候沒想到這件事,您說有另一根後想到可能是這個數

TOP

引用:
原帖由 zerogil159 於 2022-4-10 12:09 發表


我想另一根應該是log_2 3 考場寫得時候沒想到這件事,您說有另一根後想到可能是這個數
對喔~但變成是用湊的~ (2+3=5 ,3+2=5 這樣......)
那還要說明log_2 3這根是唯二的解

TOP

回復 17# satsuki931000 的帖子

第 16 題
p(x) = 0 的二根為 - a ± √(a^2 + b + 1)
q(x) = 0 的二根為 - b ± √(b^2 + a + 4)

a^2 + b + 1 和 b^2 + a + 4 均為完全平方數
接下來分成
(1) a = b (2) a > b (3) a < b 去討論,用夾的

答案是 (a,b) = (0,0) 或 (1,2)

[ 本帖最後由 thepiano 於 2022-4-10 12:47 編輯 ]

TOP

發新話題