感謝dxdxs分享題目,我先解決第一題,其他再請各位網友幫忙
\( f(x) \)為一2010次多項式,滿足\( \displaystyle f(k)=\frac{1}{k} \),其中\( k=1,2,3,...,2010 \),求\( f(2012) \)之值?
設\( f(x) \)是一個98次的多項式,使得\( \displaystyle f(k)=\frac{1}{k} \),\( k=1,2,...,99 \)。求\( f(100) \)的值?
(奧數教程 高一 第20講構造函數解題)
101.4.8補充
101中科實中也出了一模一樣的題目
https://math.pro/db/thread-1318-1-1.html
類似題
If \( P(x) \) denotes a polynomial of degree n such that \( \displaystyle P(k)=\frac{k}{k+1} \) for \( k=0,1,2,...,n \), determine \( P(n+1) \).
(USAMO 1975)
\( f(x) \)為三次多項式,且當\( x=1,2,3,4 \)時,\( \displaystyle f(x)=\frac{1}{x(x+1)} \),求\( f(5) \)?
(PTT數學版問題)
101.4.29補充
實係數多項式\( f(x) \),若\( deg f(x)=2010 \),且\( \displaystyle f(k)=\frac{2k+1}{k} \),\( \forall k=1,2,3,...,2011 \),求\( \displaystyle \sum_{k=0}^{2011}\{\; C_k^{2012}\cdot (-1)^k \cdot f(k+1) \}\; \)值。
(101台中一中,
https://math.pro/db/thread-1334-1-1.html)
101.5.10補充
多項式\( deg f(x)=2010 \),\( \displaystyle f(x)=\frac{1}{k} \),\( k=1,2,3,...,2011 \),求\( f(2012)= \)
(101高雄中學,
https://math.pro/db/thread-1345-1-1.html)
101.10.2補充
設f為一個2010次的多項式,且滿足\( \displaystyle f(k)=\frac{1}{k} \),k=1,2,3,…,2011。試求f(2012)的值。
(100全國高中數學能力競賽 台中區複賽試題(二),
https://math.pro/db/thread-1349-1-1.html)
104.12.6補充
設\( p(x) \)為一個八次多項式,若\( \displaystyle p(n)=\frac{1}{n} \),\( n=1,2,3,\ldots,9 \),則下列敘述何者正確?
(1)方程式\( xp(x)-1=0 \)恰有9個整數根 (2)\( p(x) \)的\(x^7\)項係數為\(-45\) (3)\( \displaystyle p(10)=\frac{1}{10} \) (4)\( p(11)=1 \)
(104玉井工商,
https://math.pro/db/thread-2270-1-2.html)
105.4.18補充
已知多項式\( f(x) \),且\( deg f(x)=104 \),又當\( k=1,2,\ldots,105\)時,\( \displaystyle f(k)=\frac{2}{k} \),求\( f(106) \)
(105新竹高中,
https://math.pro/db/thread-2476-1-1.html)
105.4.30補充
設\(f\)為一個100次的多項式,且滿足\(\displaystyle f(k)=\frac{1}{k}\),\(k=1,2,3,\ldots,101 \)。試求:(1)多項式\(f(x)\) (2)\(f(102)\)之值。
(建中通訊解題第106期)
113.4.21補充
設多項式函數\(f(x)\)滿足\(deg(f(x))=2024\),且對於\(k=1,2,3,\ldots,2025\),恆有\(\displaystyle f(k)=\frac{2}{k}\),則\(f(2026)\)之值為
。
(113嘉科實中,
https://math.pro/db/thread-3842-1-1.html)