5.
有甲、乙、丙三支大瓶子,開始時均裝有1公升的水,每一輪操作都是先將甲瓶的水倒出一半到乙瓶,再將乙瓶的水倒出一半到丙瓶,然後再將丙瓶的水倒出一半回甲瓶,若一直操作下去當穩定狀態時,甲瓶的水量為
公升?
其實weiye在2009年也解過一次了,
https://math.pro/db/thread-845-1-10.html
或許可以改一下題目
甲瓶有1公升濃度100%酒,乙瓶和丙瓶各有1公升的水,按照上面的操作方式,最後甲瓶酒的濃度為多少?
6.
\( \overline{AD} \)為半圓的直徑,且\( \overline{AB}=2 \)、\( \overline{BC}=7 \)、\( \overline{CD}=11 \),則\( \overline{AD}= \)?
類題
\( \overline{P_0P_3} \)為半圓之直徑,\( P_1 \)、\( P_2 \)為半圓周上兩點。令\( a=\overline{P_0P_1} \)、\( b=\overline{P_1P_2} \)、\( c=\overline{P_2P_3} \)、\( d=\overline{P_0P_3} \)。試證d為方程式\( x^3-(a^2+b^2+c^2)x-2abc=0 \)之一根。
(81大學聯考 自然組)
103.3.13補充
圓內接四邊形ABCD中,直徑\( \overline{BC}=13 \)、\( \overline{AB}=\overline{AD}=5 \),求四邊形ABCD的面積
(101臺南女中數學成就測驗,
http://www.tngs.tn.edu.tw/depart ... ing1.asp?Dir=10100\)
104.4.25補充
四邊形\( ABCD \)內接於一圓,且\( \overline{AB} \)為此圓的直徑,已知\( \overline{BC}=7 \),\( \overline{CD}=\overline{DA}=3 \),則直徑\( \overline{AB} \)之長。
(104台南二中,
https://math.pro/db/thread-2232-1-1.html)
7.
設\( i=\sqrt{-1} \),求\( (1+\sqrt{2}i)^{2013}+(1-\sqrt{2}i)^{2013} \)除以12的餘數為?
在這篇寸絲說這類題目可以用二項式定理或者用遞迴關係式
https://math.pro/db/thread-680-2-1.html
在這篇thepiano用遞迴關係式解出答案
http://www.shiner.idv.tw/teacher ... 53&t=3052#p9416
那你可以想看看,這題能不能用二項式定理解題,假如不能用也想看看為什麼不能用。
9.
\( \displaystyle 1^2 \cdot C_1^8 \cdot (\frac{1}{5})^1 \cdot (\frac{4}{5})^7+2^2 \cdot C_2^8 \cdot (\frac{1}{5})^2 \cdot (\frac{4}{5})^6+3^2 \cdot \cdot C_3^8 \cdot (\frac{1}{5})^3 \cdot (\frac{4}{5})^5+\ldots+8^2 \cdot C_8^8 \cdot (\frac{1}{5})^8 \)
\( \displaystyle 1^2 \cdot C_1^{10}(\frac{1}{6})(\frac{5}{6})^9+2^2 \cdot C_2^{10}(\frac{1}{6})(\frac{5}{6})^7+\ldots+10^2 \cdot C_{10}^{10}(\frac{1}{6})^{10} \)
(98彰化女中,
https://math.pro/db/thread-741-1-1.html)
問答4.
過點\( (-2,2) \)且和橢圓方程式\( x^2+xy+y^2=1 \)相切的直線方程式為?
將極線代入橢圓方程式求得切點坐標,再和\( (-2,2) \)求出切線方程式