發新話題
打印

110臺南女中

推到噗浪
推到臉書

回復 55# tsusy 的帖子

寸絲老師,想請問19題為什麼AD邊是a+b=1呢?謝謝
另外想請問為什麼計算三f(k)是那樣呢?

[ 本帖最後由 math1 於 2021-4-27 11:37 編輯 ]

TOP

回復 10# tsusy 的帖子

計 3. 55# \( f(k) \) 我的記號混用了,sorry,沒注意到原本的 Sigma 也是用 k,兩個 k 要用不同的記號表示才可以。
對於任意整數 n, \(f(x + n) = f(n) + f(x)\), \(f(n) = n \cdot ({2^{100}} - 1) \)。

填充 7. 原 10# 處,代換間的 Jacobian Matrix 實際上固定的,也就是說它實際上是個線性變換
(其實應該在算 Jacobian Matrix 之前,就知道了)
所以我們也會用線性變換來處理的方法:

令集合 \({S_0} = \{ (\alpha ,\beta ,\gamma )^T \mid |\alpha | \le 1,|\alpha + \beta | \le 1,|\alpha + \beta + \gamma | \le 1\} \), \({S_1} = \{ (u,v,w)^T \mid |u| \le 1,|v| \le 1,|w| \le 1\} \)
以下將 \({\mathbb{R}^3}\) 及 \({\mathbb{R}^3}\) 中向量皆記為 \(3 \times 1\) 階的矩陣。\(V_{S_0},V_{S_1}, V_S\) 分別表示 \({S_0},{S_1},S\) 的體積。

\(\begin{array}{*{20}{l}}{{T_1}:}&{{S_0} \to {\mathbb{R}^3},}\\{}&{(\alpha ,\beta ,\gamma )^T \mapsto {{ {\alpha \mathop a\limits^ \rightharpoonup + \beta \mathop b\limits^ \rightharpoonup + \gamma \mathop c\limits^ \rightharpoonup } }}.}\end{array} \)

以上關係可表示為 \({ {\alpha \mathop a\limits^ \rightharpoonup + \beta \mathop b\limits^ \rightharpoonup + \gamma \mathop c\limits^ \rightharpoonup } } = \left( {\begin{array}{*{20}{c}}{\mathop a\limits^ \rightharpoonup }&{\mathop b\limits^ \rightharpoonup }&{\mathop c\limits^ \rightharpoonup }\end{array}} \right)\left( {\begin{array}{*{20}{c}}\alpha \\\beta \\\gamma \end{array}} \right) \),

因此線性變換 \({T_1}\) 將 \({S_0}\) 映射至 \(S\),故有 \({V_S} = |\det (\begin{array}{*{20}{c}}{\mathop a\limits^ \rightharpoonup }&{\mathop b\limits^ \rightharpoonup }&{\mathop c\limits^ \rightharpoonup }\end{array})|{V_{{S_0}}} = 6V \cdot {V_{{S_0}}} \)。

\(\begin{array}{*{20}{l}}{{T_2}:}&{{S_0} \to {\mathbb{R}^3},}\\{}&{(\alpha ,\beta ,\gamma )^T \mapsto (\alpha ,\alpha + \beta ,\alpha + \beta + \gamma )^T.}\end{array} \)

以上關係可表示為 \(\left( {\begin{array}{*{20}{c}}\alpha \\{\alpha + \beta }\\{\alpha + \beta + \gamma }\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&0&0\\1&1&0\\1&1&1\end{array}} \right)\left( {\begin{array}{*{20}{c}}\alpha \\\beta \\\gamma \end{array}} \right) \),

因此線性變換 \({T_2}\) 將 \({S_0}\) 映射至 \({S_1}\),故有 \({V_{{S_1}}} = |\det (\left( {\begin{array}{*{20}{c}}1&0&0\\1&1&0\\1&1&1\end{array}} \right))|{V_{{S_0}}} = {V_{{S_0}}} \)。
而 \({V_{{S_1}}} = {2^3} = 8\),故 \({V_S} = 6V \cdot 8 = 48V \)。

[ 本帖最後由 tsusy 於 2021-4-27 19:41 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 13# craig100 的帖子

如下圖

附件

填充題6.png (30.84 KB)

2021-4-27 19:33

填充題6.png

TOP

回復 43# thepiano 的帖子

補充
期望值=次數*機率
把A當原點
右上算轉向一次
X軸方向能放5個右上
Y軸方向能放3個右上
共8個
上右一樣8個
算式如鋼琴大大同

TOP

回復 1# Superconan 的帖子

填14
微積分基本定理公式
f'(2)=0 可求得a=-2
f''(x)=0
x=1 or x=-2(不合)一階導數=0
帶回f(1)=-114/5
計算小心三分真難賺

TOP

回復 65# nanpolend 的帖子

請教填充題15

TOP

填充15.請參考

請參考附件

附件

16196270189427579694697838943932.jpg (1.71 MB)

2021-4-29 00:24

16196270189427579694697838943932.jpg

TOP

引用:
原帖由 nanpolend 於 2021-4-29 00:08 發表
請教填充題15
這題很久以前就出現過了(查到最早出現在2003)
以下連結出現在2011
http://www.shiner.idv.tw/teachers/viewtopic.php?t=2412

TOP

回復 9# thepiano 的帖子

請教16題
畫圖形後依然看不懂

TOP

回復 69# nanpolend 的帖子

第 16 題
寫詳細一點好了

| t^2 - √[(t^2 - 5)^2 + (2t - 3)^2] |
= | √[(t^2 - 5)^2 + (2t - 3)^2]- t^2|
= | √[(t^2 - 5)^2 + (2t - 3)^2]- (t^2 + 1) + 1 |
= | AB - AF + 1 |
≦ | BF + 1 |
= 6
等號成立於 A、F、B 共線,且 F 在線段 AB 上

√[(t^2 - 5)^2 + (2t - 3)^2] 是拋物線 y^2 = 4x 上一點 A(t^2,2t) 到 B(5,3) 的距離
焦點 F(1,0),t^2 + 1 是 A 到準線 x = -1 的距離 = AF

TOP

發新話題