發新話題
打印

106彰化女中

推到噗浪
推到臉書
這張大概應該80分才能進複試吧!
計算一 小弟提供自己想到了4個方法
(1)代點到直線距離公式
(2)設直線參數式,配方法求最小值
(3)三角函數
(4)柯西

[ 本帖最後由 eyeready 於 2017-5-8 21:59 編輯 ]

TOP

填充A7.

建立坐標系 B(-4,0),D(-2,0),C(0,0),E(-3,0)射線CA:x-y=0,y>=0
作過B,D的圓其半徑R,圓心Q(-3,k),k>0 使圓交射線CA於A,則由正弦定理知 2/sinBAD=2R,欲使角BAD最大則R要最小=>圓與射線CA:x-y=0 相切
=> d(Q,射線CA:x-y=0)^2 =R^2=>(k+3)^2/2=k^2+1
=>k^2+6k+9=2k^2+2 => (k-7)(k+1)=0 =>k=7
tanBAD=tanBQE=1/k=1/7

[ 本帖最後由 laylay 於 2017-5-9 13:19 編輯 ]

TOP

回復 9# 阿光 的帖子

A-7 另解
作DE垂直直線AC於E,作BF垂直直線AC於F
CD=2,DE=CE=√2,BC=4,BF=CF=2√2
令AC=x
\(\begin{align}
  & \tan BAD=\tan \left( BAF-DAE \right) \\
& =\frac{\frac{2\sqrt{2}}{x+2\sqrt{2}}-\frac{\sqrt{2}}{x+\sqrt{2}}}{1+\frac{2\sqrt{2}}{x+2\sqrt{2}}\times \frac{\sqrt{2}}{x+\sqrt{2}}} \\
& =\frac{\sqrt{2}x}{{{x}^{2}}+3\sqrt{2}x+8}\le \frac{1}{7} \\
&  \\
& \frac{{{x}^{2}}+3\sqrt{2}x+8}{\sqrt{2}x}=\frac{x}{\sqrt{2}}+\frac{8}{\sqrt{2}x}+3\ge 2\sqrt{4}+3=7 \\
\end{align}\)

TOP

填充 A - 2 另解

取捨原理: 4⁴ - 3*2*4² + 2² = 164


填充 A - 7 另解

設 A 在 BC 上的垂足為 A',令 AA' = A'C = x

tan∠BAD = tan(∠BAA' - ∠DAA') = x / (x²+3x+4) [ x>0 ] ⇒ 最大值 = 1/7


計算 1

除了 eyeready 老師提出的方法,另可用 1. 先求垂足  2. 向量投影長  3. 由面積求高

TOP

回復 9# 阿光 的帖子

A-5

附件

擷取.PNG (9.47 KB)

2017-5-9 08:04

擷取.PNG

TOP

想請問計算第三題,這題好像在哪看過,但就是想不起來

TOP

回復 16# tommy10127 的帖子

98彰化女中,103台中二中,103南大附中都考過.....
參考https://www.physixfan.com/archives/445

[ 本帖最後由 thepiano 於 2017-5-9 10:15 編輯 ]

TOP

回復 16# tommy10127 的帖子

x^2<=1-y^2 , z^2<=1-y^2   給定y 則x,z圍出4(1-y^2)的面積,y由-1積分到1得體積=4(y-y^3/3)[-1..1]=4[(1-1/3)-(-1-(-1)/3)]=16/3
若再加上x^2+z^2<=1的條件
則體積變成(根號2)^3+6*4(y-y^3/3)[1/根號2..1]=16-8根號2

[ 本帖最後由 laylay 於 2017-5-10 21:22 編輯 ]

TOP

填充B2.

(x^4+8x^3-2x^2+kx-5)'=4x^3+24x^2-4x+k=0
它的三根即為-6,-1,1=> k=-24

TOP

填充A4.

L必過反曲點(0,-5)設L:y=mx-5代入f得x^2=2-m
B C^2=x^2*(1+m^2)得20=(2-m)(1+m^2)得m=-2
L:y=-2x-5

TOP

發新話題