第24題
寫一下小弟的做法
令三根為\(p,q,r\)
\(a=p+q+r=pqr>0\)
\(p,q,r\)為三正或一正二負
當\(p,q,r\)為一正二負時,不失一般性,設\(p<0,q<0,r>0\)
\(b=pq+qr+rp=pq+r\left( p+q \right)<pq+\left[ -\left( p+q \right)\left( p+q \right) \right]=-\left( {{p}^{2}}+pq+{{q}^{2}} \right)<0\),不合題意
故\(p,q,r\)為三正
\(\begin{align}
& p+q+r\ge 3\sqrt[3]{pqr} \\
& a\ge 3\sqrt[3]{a} \\
& a\ge 3\sqrt{3} \\
\end{align}\)
等號成立於\(p=q=r=\sqrt{3}\)時,此時\(b=9\)