書裡還有很多值得準備的題目,google books有的我就將網址列出來
沒有的我就將內容抄出來,想知道更多題目可以到圖書館去找這本書。
------------------------------
Prove that the number
c=
391+
3−92+
394 is a zero of
F(x)=x^3+\root 3 \of 6 x^2-1 .
第44頁
http://books.google.com.tw/books?id=l0CDp-YVyjoC&lpg=PP1&ots=01zdioOshi&dq=Equations%20and%20Inequalities:Elementary%20Problems%20and%20Theorems%20in%20Algebra%20and%20Number%20Theory&pg=PA44#v=onepage&q&f=true
求滿足下列等式的數a:
\displaystyle \root 3 \of{\root 3 \of 2 -1}=\frac{1}{\root 3 \of a}(1-\root 3 \of 2+\root 3 \of 4)
(1995日本奧林匹克預選賽)
若
\displaystyle \root 3 \of{\root 3 \of 2 -1}=\root 3 \of a+\root 3 \of b+\root 3 \of c ,則
a+b+c= ?
(92高中數學能力競賽,高中數學101 P25)
110.9.23補充
\displaystyle \root 3 \of{\root 3 \of 2 -1}=\root 3 \of a+\root 3 \of b+\root 3 \of c ,其中
a、
b、
c \in Q。求
a+b+c= 。
(100中科實中,
https://math.pro/db/viewthread.php?tid=1107&page=3#pid3377)
112.8.21補充
已知實數
x滿足拉馬努金等式
\displaystyle \root 3 \of{\root 3\of 2-1}=\frac{1-\root 3\of 2+\root 3 \of 4}{x},求實數
x的值。(須以最簡單形式表示)
(111高中數學能力競賽 第一區(花蓮高中)口試試題,
https://math.pro/db/thread-3782-1-1.html)
當
\root 3\of{\root 3\of{16}-2}=\root 3\of a+\root 3\of b+\root 3\of c,其中
a,b,c \in Q。求
a+b+c。
(109第1學期中山大學雙週一題)
110.2.25補充
若
a是一個有理數且滿足
\displaystyle \frac{1}{\root 3 \of 4+\root 3 \of 2+a}=\alpha \root 3 \of 4+\beta \root 3 \of 2+\gamma,其中
\alpha,\beta,\gamma為有理數。試求
\alpha,\beta,\gamma(用
a表示)
(109北科附工,
https://math.pro/db/viewthread.php?tid=3326&page=2#pid21223)
111.1.10補充
有理化
\displaystyle \frac{1}{\root 3 \of 2+\root 3 \of 3+\root 3 \of 5}
------------------------------
For the expression
\displaystyle Q(n)=\frac{1}{2}\cdot \frac{3}{4}\cdot \frac{5}{6}\cdot \cdot \cdot \frac{2n-1}{2n} (
n \ge 2 )
we will prove the bounds
\displaystyle \frac{1}{2 \sqrt{n}}<Q(n)<\frac{1}{\sqrt{2n+1}} .
第103頁
http://books.google.com.tw/books?id=l0CDp-YVyjoC&lpg=PP1&ots=01zdioOshi&dq=Equations%20and%20Inequalities:Elementary%20Problems%20and%20Theorems%20in%20Algebra%20and%20Number%20Theory&pg=PA103#v=onepage&q&f=true
\displaystyle a_n=\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot (2n)} ,試求
\displaystyle \lim_{n \to \infty}a_n 。
(97文華高中,連結已失效h ttp://forum.nta.org.tw/examservice/showthread.php?t=47781)
------------------------------
Show that for arbitary
x,y,z \in R we have
\displaystyle (\frac{x}{2}+\frac{y}{3}+\frac{z}{6})^2 \le \frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{6} (43)
Furthermore,determine when equality occures in (43).
第129頁
http://books.google.com.tw/books?id=l0CDp-YVyjoC&lpg=PP1&ots=01zdioOshi&dq=Equations%20and%20Inequalities:Elementary%20Problems%20and%20Theorems%20in%20Algebra%20and%20Number%20Theory&pg=PA129#v=onepage&q&f=true
求
\displaystyle (\frac{x}{2}+\frac{y}{3}+\frac{z}{6})^2=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{6} 的所有整數解。
(90高中數學能力競賽 中彰投區試題)
h ttp://www.math.nuk.edu.tw/senpengeu/HighSchool/2002_Taiwan_High_Taichung_02.pdf 連結已失效
------------------------------
Show that the inequality
\sqrt{x+1}+\sqrt{2x-3}+\sqrt{50-3x}\le 12 holds for all values
x \in R for which the left-hand side is defined.
SOLUTION. By (48) with
n=3 ,
u_1=\sqrt{x+1} ,
u_2=\sqrt{2x-3} , and
u_3=\sqrt{50-3x}
we have
(\sqrt{x+1}+\sqrt{2x-3}+\sqrt{50-3x})^2 \le 3(x+1+2x-3+50-3x)=144 ,
from which, upon taking the square root, we obtain the result.
求函數
y=\sqrt{x+27}+\sqrt{13-x}+\sqrt{x} 的最大和最小值。
(2009大陸高中數學競賽)
------------------------------
Given an aribitrary prime p, solve the Diophantine equation
x^4+4^x=p .(第245頁)
SOLUTION. For any integer
x<0 ,
4^x is not an integer, and neither is
x^4+4^x .
Thus for any prime p, the given equation has no negative solution.
For
x=0 we have
0^4+4^0=1 , which is not a prime, and for
x=1 we have
1^4+4^1=5 , a prime.
We will now show that for any integer
x\ge 2 , the number
x^4+4^x is composite. If
x=2k is even, where
k \in N , then
x^4+4^x=2^4 k^4+4^{2k}=16(k^4+4^{2(k-1)}) ,
which is a composite number. If
x=2k+1 (
k \in N ) is odd, then
x^4+4^x=x^4+4 \cdot 4^{2k}=[x^4+4x^2(2^k)^2+4(2^k)^4]-4x^2(2^k)^2
=[x^2+2(2^k)^2]^2-(2x \cdot 2^k)^2
=[x^2+2x \cdot 2^k+2(2^k)^2][x^2-2x \cdot 2^k+2(2^k)^2]
=[(x+2^k)^2+2^{2k}][(x-2^k)^2+2^{2k}] ,
which is again compostie, since
(x±2^k)^2+2^{2k}\ge 2^{2k} \ge 2^2 >1 .
To summarize, for
p=5 the given equation has the unique solution
x=1 ,while there are no solutions for any prime
p \ne 5
Prove that if
n>1 then
n^4+4^n is compostie.
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=328143
設
n,a 為自然數,試證:有無限多個a使得
n^4+a 必不為質數
(藍藍天上一朵雲 歷屆教甄考題整理2005版第75題)
Prove that there are infinitely many natural numbers a with the following property: the number
z=n^4+a is not prime for any natural number n.
(1969IMO,
http://www.artofproblemsolving.c ... p/1969_IMO_Problems)
Compute
\displaystyle \frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)} .
(1987AIME)
101.1.10補充
100卓蘭實驗高中,
https://math.pro/db/thread-1165-1-1.html
高中數學101 P26