填充題
1.求使得\( 2^n+2^{16}+2^{19} \)為完全平方數的正整數n?
試求所有的正整數\(n\)使得\( x=2^8+2^{11}+2^n \)為一完全平方數。
(2006TRML團體賽)
若n為正整數,且\( 4^{n-2}+2^8+1 \)為一完全平方數,則n的最大值為多少?
(2005TRML接力賽)
使得\( 4^{97}+4^{2008}+4^n \)為完全平方數的最大正整數n為?
(97高中數學能力競賽第四區筆試二)
https://math.pro/db/thread-919-1-2.html
求最大自然數n,使得\( 4^{2009}+4^{2008}+4^n \)是完全平方數
(建中通訊解題第68期)
108.4.27補充
\(n\)為正整數,已知\(2^2+2^n+2^{10}\)為完全平方數,\(n\)的最大值與最小值之和為
。
(108彰化女中,
https://math.pro/db/thread-3123-1-1.html)
2.將\( n^2 \)個正數排成一個\( n \times n \)階方陣,其中每一列的數成等差,每一行的數成等比,且所有的公比皆相等。已知\( a_{24}=1 \),\( \displaystyle a_{42}=\frac{1}{8} \),\( S=a_{11}+a_{22}+...+a_{nn} \),若\( \displaystyle S+\frac{1}{2^{10}} \)的和為一正整數,則n之值為。
[出處,1990大陸高中數學競賽]
解答可以到
https://math.pro/db/thread-919-1-2.html 下載"97高中數學能力競賽補充資料.rar"
3.如圖,兩個全等之矩形置於一直角三角形內,並使其一長邊各與三角形之一股重合。設兩股長a,b可以調整,又設矩形短邊長為mb,則m之最大值為。
[出處,97高中數學能力競賽 南區(高雄區)筆試一試題]
4.若兩圖形\( y=f(x)=a^x \)與\( y=g(x)=log_a x \)有唯一的交點,則不為1的正實數a之範圍為。
指數函數\( y=f(x)=a^x \)與對數函數\( y=g(x)=log_a x \),若已知\( f(x) \)與\( g(x) \)相交三點,求實數a的範圍。
(97中一中)
7.某特徵(如拇指是否可以彎曲)是根據一對基因來分類的,若A,a分別代表顯性及隱性基因,則某人有AA之基因稱為純顯性,Aa(同為aA)稱為混合型,aa稱為純隱性。外觀上,Aa和AA都有這個特徵。孩子從父母各得一因子,假設AA,Aa,aa之人口比例分別為\( \displaystyle \frac{1}{4} \),\( \displaystyle \frac{1}{2} \),\( \displaystyle \frac{1}{4} \),且婚配與否和此特徵無關。若有一對夫妻他們4個小孩中有3個具顯性特徵,求此對夫妻皆為混合型之機率為。
[出處,97高中數學能力競賽 台中區筆試二試題]
9.若\( \displaystyle \frac{n}{100}<2 cos \frac{2 \pi}{7}<\frac{n+1}{100} \),\( n \in N \),則n=。
[提示]
\( \displaystyle z=cos \frac{2\pi}{7}+isin \frac{2\pi}{7} \)是\( z^6+z^5+z^4+z^3+z^2+z+1=0 \)的一根
同除\( z^3 \),\( \displaystyle z^3+z^2+z+1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{z^3}=0 \)
\( (z+\frac{1}{z})^3-3(z+\frac{1}{z})+(z+\frac{1}{z})^2-2+(z+\frac{1}{z})+1=0 \)
\( (z+\frac{1}{z})^3+(z+\frac{1}{z})^2-2(z+\frac{1}{z})-1=0 \)
令\( \displaystyle t=z+\frac{1}{z}=2 cos \frac{2 \pi}{7} \)是\( t^3+t^2-2t-1=0 \)的一根
只是要找出\( t=1.246979603717467 \)這個近似值就比較麻煩了
2011.4.17感謝moun9指正
\( \displaystyle z=cos \frac{\pi}{7}+isin \frac{\pi}{7} \)更正為\( \displaystyle z=cos \frac{2\pi}{7}+isin \frac{2\pi}{7} \)
計算證明題
1.地圖上某一地區有n( \( n \ge 3 \) )個國家相鄰,但n個國家只有一個公共點(如右圖)。現用紅,黃,綠,藍四種顏色給地圖染色,但使相鄰的國家顏色不同,滿足上述染色規則的方法有\( a_n \)種。
(1)試求\( a_3 \)、\( a_4 \)的值。
(2)試求數列\( \{ a_n \} \)的遞迴關係式。
(3)求出\( a_n \)的一般項。
https://math.pro/db/thread-499-1-1.html