2.
空間中有四個點\(O\)、\(A\)、\(B\)、\(C\),其中三向量\(\vec{OA}\)、\(\vec{OB}\)、\(\vec{OC}\)兩兩夾角皆為\(45^{\circ}\),已知\(|\;\vec{OA}|\;=\sqrt{2}\)、\(|\;\vec{OB}|\;=\sqrt{3}\)、\(|\;\vec{OC}|\;=\sqrt{6}\),求\(\vec{OA}\)、\(\vec{OB}\)、\(\vec{OC}\)張出的四面體體積為
。
(106高雄女中,
https://math.pro/db/viewthread.php?tid=2758&page=5#pid17327)
https://math.pro/db/thread-2131-1-3.html
3.
有甲、乙兩箱,甲箱內有一白球、一黑球,乙箱內有一白球。每次先從甲箱任取一球放入乙箱內,再由乙箱任取一球放回甲箱裡,這樣的操作稱做一局。第\(n\)局結束時,求甲箱內有一白一黑的機率為
。(以\(n\)表示)
101文華高中,shiauy解題
https://math.pro/db/viewthread.php?tid=1333&page=7#pid5410
105彰化高中,
https://math.pro/db/thread-2492-1-1.html
4.
設\(x^3+2x^2+3x+4=0\)之三根為\(a\)、\(b\)、\(c\),求行列式\(\Bigg\vert\;\matrix{-2a&a+b&a+c\cr b+a&-2b&b+c\cr c+a&c+b&-2c}\Bigg\vert\;\)之值為
。
\(x^3-2010x^2+x-2012=0\)之三根為\(a\)、\(b\)、\(c\),求行列式\(\Bigg\vert\;\matrix{-2a&a+b&a+c\cr b+a&-2b&b+c\cr c+a&c+b&-2c}\Bigg\vert\;\)之值為
。
(101高雄中學,
https://math.pro/db/thread-1345-1-1.html)
6.
大富翁遊戲中,每個回合都會擲一個六面骰決定前進步數,設此六面骰的六個面分別為 1, 2, 3, 4, 5, 6 點,而現在你的所在位置距離「機會與命運」格還有10步,若你要走到「機會與命運」格,請問有
種不同的走法?(例如:先前進 4 步,再前進 6 步,即為一種走法;或先前進1步,再前進6步,再前進3步,即為另一種走法。)
(建中通訊解題第162期,
http://web2.ck.tp.edu.tw/~mathwe ... 30-15&Itemid=37)
8.
已知實數\(a>1\),正方形\(ABCD\)的面積為36,其中\(\overline{AB}\)與\(x\)軸平行,且\(A\)、\(B\)、\(C\)分別為函數\(y=log_ax\),\(y=2log_ax\),\(y=3log_ax\)圖形上的點,試求\(a=\)
。
(105中科實中國中部,
https://math.pro/db/thread-2509-1-1.html)
9.
已知圓\(x^2+y^2=37\)內部一點\(P(1,2)\),若\(P\)點為某弦的一個三等分點,則此弦所在的直線方程式為
。
(101陽明高中,
https://math.pro/db/thread-1433-1-1.html)
10.
\(x\)為實數,當\(\sqrt{x^2-8x+41}+\sqrt{x^2-2x+5}\)有最小值時,\(x\)的值為
。
13.
空間座標系中,已知圓錐面\(z^2=x^2+y^2\)與平面\(x+z=6\)相交的曲線為一拋物線,求此拋物線的焦距為
。
二、說明題、計算證明題
1.
請根據108課綱的數學課程安排,分別使用10年級、11年級、12年級和大學微積分介紹的數學方法解此題目:
「\(x\)、\(y\)為實數,已知\(3x+4y=5\),求\((x-1)^2+(y+2)^2\)的最小值與此時的\((x,y)\)值。」
(請標註該方法為哪一年級,每個方法2分,共8分)
請以各種不同的解題方法求點到直線距離。
題目:求點\(P(8,7)\)到直線\(L\):\(4x-3y+19=0\)的距離。
說明1:請於每種方法概述該法的主要解題結構,再列出解題過程。
說明2:每種方法得3分,本題上限12分。
(106彰化女中,
https://math.pro/db/viewthread.php?tid=2765&page=2#pid17183)