104.2.7補充
2015AMC10A第二十題送分
On the 2015 AMC 10 A, Number 20, the problem should have included the additional condition that the side lengths are positive integers. Without this condition, all 5 choices are possible for A + P (if the sides of the rectangle are 2 and 24.5, then A = 49 and P = 53, giving A+P = 102). Since the problem was incorrectly posed, all answers, including blank or no answer, will be counted correct. http://www.99cef.org.tw/news_02.php?id=312
也就是說,在"奇數區間"內, n 每增加 2,就遇到一個"整數面積";而在"偶數區間"內, 是否得"整數面積",取決於"本區間開始時是否已累積整數面積"(若是,則整個區間的 n 皆是;若否,則整個區間的 n 皆否): 故該"偶數區間"得"整數面積"的充要條件為"該偶數前有偶數個奇數"(因為每個區域的"寬"都是奇數),也就是型如 4k 的偶數方可。
綜上, 區間 ((4k)²,(4k+1)²] (1 ≤ k ≤7) 中的 n 皆合所求;而諸"奇數區間" 的 n 可合併計算 (穿插的"偶數區間"不影響其整數性): 由 1 (不含) 起算,每 2 個 "奇數區間" 的 n 恰有 1 個合所求。