發新話題
打印

99 台中二中教甄

回復 40# mathelimit 的帖子

\(\begin{align}
  & x>a>0 \\
& 0<\frac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{x+a}=\sqrt{\frac{x-a}{x+a}}=\sqrt{1-\frac{2a}{x+a}}<1 \\
\end{align}\)
且\(\sqrt{1-\frac{2a}{x+a}}\)遞增

TOP

回復 41# thepiano 的帖子

謝謝~ 我懂了 ^^

TOP

回復 11# weiye 的帖子

請教如何確定判別式小於零?感謝。

TOP

回復 43# mathca 的帖子

判別式=(cos^2-cot^2)-3cot^2


其中cos^2-cot^2=cos^2-(cos/sin)^2  <===在第一象限中sin之值介於0~1所以左式是負的 而-3cot^2亦為負

TOP

回復 1# weiye 的帖子

請教填充第7題,感謝。

TOP

回復 45# mathca 的帖子

TOP

回復 45# mathca 的帖子

填充第 7 題:

題目只要求 \(\cos\angle BAC\),所以不失一般性,可以將 \(\triangle ABC\) 以相似形放大,

使得 \(A\) 在 \(\overline{OM}\) 上,\(B\) 在 \(\overline{ON}\) 上,\(C\) 在 \(\overline{NM}\) 上,

令 \(A(a,0), B(0,b)\),依照 \(\overline{DE}=\overline{EF}\) 且 \(\overline{GH}=\overline{HI}\) 的特性,

可得 \(C(2a,3b)\)。

令 \(\overline{AB}\) 的中點為 \(\displaystyle D(\frac{a}{2},\frac{b}{2})\)

因為 \(\overline{JK}=\overline{KL}\),可得 \(\vec{CD}\)垂直\(\vec{MN}\),\(\vec{CD}\cdot \vec{MN}=0\Rightarrow 4a-3b=0\)

且因為 \(C\) 在 \(\overleftrightarrow{MN}\) 上, 可得 \(\displaystyle \frac{2a}{4}+\frac{2b}{3}=0\)

兩者解聯立,可解得 \(\displaystyle a=\frac{18}{25}, b=\frac{24}{25}\)

從而得 \(\displaystyle\cos\angle BAC = \frac{\vec{AB}\cdot\vec{AC}}{\left|\vec{AB}\right|\left|\vec{AC}\right|}\)

註一:在算夾角前,可以將 \(\vec{AB},\vec{AC}\) 先適度伸縮,就換變得很好算了。)

註二:甚至不用解出 \(a,b\) 的實際值,由 \(4a-3b=0\Rightarrow a:b=3:4\),

   令 \(a=3t, b=4t\),其中 \(t>0\),

   即可得 \(\displaystyle\cos\angle BAC = \frac{\vec{AB}\cdot\vec{AC}}{\left|\vec{AB}\right|\left|\vec{AC}\right|}\) 之值。

多喝水。

TOP

回復 47# weiye 的帖子

感謝提示。這個想法有點神─伸縮放大。

TOP

回復 16# weiye 的帖子

請教:
計算題第 4 題: http://www.shiner.idv.tw/teachers/viewtopic.php?t=1437 當中第二題─源自大陸張才元老師的附檔中
定理二 , Q之座標 ( a^2 / x0 , 0 ) 如何算出,感謝。

TOP

回復 49# mathca 的帖子

焦半徑和內分比

TOP

發新話題