填充題
2.
\(n\)為正整數,已知\(2^2+2^n+2^{10}\)為完全平方數,\(n\)的最大值與最小值之和為
。
試求所有的正整數\(n\)使得\( x=2^8+2^{11}+2^n \)為一完全平方數。
(2006TRML團體賽,
https://math.pro/db/viewthread.php?tid=968&page=1#pid2218)
3.
設有\(A\)、\(B\)兩支大瓶子,開始時,\(A\)瓶裝有\(\displaystyle \frac{2}{3}\)公升的純酒精,\(B\)瓶裝有\(\displaystyle \frac{1}{3}\)公升的礦泉水。每一輪操作都是先將\(A\)瓶的溶液倒出一半到\(B\)瓶,然後再將\(B\)瓶的溶液倒出一半回\(A\)瓶(不考慮酒精與水混合後體積的縮小)。在第三輪操作後,\(A\)瓶的溶液中有
%的酒精。
設有\(A\)、\(B\)兩支大瓶子,開始時,\(A\)瓶裝有\(a\)公升的純酒精,\(B\)瓶裝有\(b\)公升的礦泉水。每一輪操作都是先將\(A\)瓶的溶液倒出一半到\(B\)瓶,然後再將\(B\)瓶的溶液倒出一半回\(A\)瓶(不考慮酒精與水混合後體積的縮小)。設\(n\)輪操作後,\(A\)瓶有\(a_n\)公升的溶液,\(B\)瓶有\(b_n\)公升的溶液。已知二階方陣\(\left[ \matrix{a_{11}&a_{12} \cr a_{21}&a_{22}} \right]\)滿足\( \left[\matrix{a_n \cr b_n} \right]=\left[ \matrix{a_{11}&a_{12} \cr a_{21}&a_{22}} \right]^n \left[ \matrix{a \cr b} \right] \)。
(1)求二階方陣\(\left[ \matrix{a_{11}&a_{12} \cr a_{21}&a_{22}} \right]\)。
(2)當\(\displaystyle a=\frac{2}{3},b=\frac{1}{3}\)時,求\(a_{100}\)及\(b_{100}\)。
(3)當\(\displaystyle a=\frac{2}{3},b=\frac{1}{3}\)時,在第二輪操作後,\(A\)瓶的溶液中有百分之多少的酒精?
(98指考數學乙,
https://www.google.com/search?q= ... chrome&ie=UTF-8)
5.
如圖所示,\(PQRS\)為一給定的矩形,長\(\overline{PQ}=14,\overline{QR}=6\),而\(\Delta ABC\)為等腰三角形,其中\(\overline{AB}=\overline{AC}\),\(P\)、\(Q\)在\(\overline{BC}\)邊上,\(R\)、\(S\)分別在\(\overline{CA}\)、\(\overline{AB}\)邊上,求\(\Delta ABC\)面積的最小值=
。
如圖所示,\(PQRS\)為一給定的矩形,長\(\overline{PQ}=12,\overline{QR}=5\),而\(\Delta ABC\)為等腰三角形,其中\(\overline{AB}=\overline{AC}\),\(P\)、\(Q\)在\(\overline{BC}\)邊上,\(R\)、\(S\)分別在\(\overline{CA}\)、\(\overline{AB}\)邊上,則當\(\Delta ABC\)中\(\overline{BC}\)邊上的高為
時,\(\Delta ABC\)的面積為最小。
(100指考數學甲,
https://www.google.com/search?q= ... chrome&ie=UTF-8)
6.
將一枚均勻的硬幣丟擲\(n\)次,在丟擲過程中,正面第一次出現時可得獎金100元,正面第二次出現時可再得獎金200元,正面第三次出現時可再得獎金300元,以此類推。則丟擲\(n\)次的獎金期望值為
元。(以\(n\)表示)
將一枚均勻的硬幣丟擲10次,在丟擲過程中,正面第一次出現時可得獎金100元,正面第二次出現時可再得獎金200元,正面第三次出現時可再得獎金300元,以此類推。則:
(1)得到獎金2800元的機率為
。
(2)丟擲10次的獎金的期望值為
元。
(103彰化女中段考試題)
已知丟某枚銅板,其出現正面的機率為\(p\),出現反面的機率為\((1-p)\),將此枚銅板丟擲\(n\)次,在丟擲過程中,正面第一次出現時,可得獎金1元﹐正面第二次出現時﹐可再得獎金2元,正面第三次出現時,可再得獎金 3 元,以此類推。試問下列哪些選項是正確的?
(1)若\(n\)次丟擲中出現正面\(k\)次,總共得到獎金\(\displaystyle \frac{1}{2}(k^2-k)\)元
(2) 丟擲銅板第二次之後,累計得獎金1元的機率為\(2(p-p^2)\)
(3) 總共得到獎金2元的機率為\(\displaystyle \frac{n(n-1)}{2}p^2(1-p)^{n-2}\)
(4) 總共得到獎金\(\displaystyle \frac{1}{2}(n^2-n)\)元的機率為\(n(p^{n-1}-p^n)\)
(98指考數學甲,
https://www.google.com/search?q= ... chrome&ie=UTF-8)
7.
在空間直角坐標系中有一點\(A(5,2\sqrt{6},7)\)。\(xy\)平面上有一圓\(C\),其圓心為原點\(O\)、半徑為\(\sqrt{2}\),\(P\)為圓\(C\)上的點且向量\(\vec{OA}\)與向量\(\vec{OP}\)所圍三角形面積為整數,則這樣的\(P\)點有
個。
在空間直角坐標系中有一點\(A(3,4,5)\)。\(xy\)平面上有一圓\(C\),其圓心為原點\(O\)、半徑為\(\sqrt{2}\),\(P\)為圓\(C\)上的點且向量\(\vec{OA}\)與向量\(\vec{OP}\)所圍三角形面積為整數,則這樣的\(P\)點有
個。
(1)4 (2)6 (3)8 (4)10 (5)12
(105模擬考數學甲,
http://affairs.ymhs.tyc.edu.tw/m ... E7%94%B21060405.pdf)
8.
函數\(f(x)=x^2-\sqrt{2}x\)與\(g(x)=-x^2-1\)的圖形有兩條公切線且可得到四個切點,則此四個切點組成的四邊形周長為
。
函數\(f(x)=x^2-2ax\)與\(g(x)=-x^2-1\)的圖形有兩條公切線且可得到四個切點,若此四個切點組成的四邊形周長為6,求實數\(a\)的值。
(103高中數學能力競賽,
http://pisa.math.ntnu.edu.tw/fil ... s_writtenexam_1.pdf)
計算證明題
2.
設相異三平面\( E_1 \):\( a_1 x+b_1 y+c_1 z=d_1 \),\( E_2 \):\( a_2 x+b_2 y+c_2 z=d_2 \),\( E_3 \):\( a_3 x+b_3 y+c_3 z=d_3 \)
兩兩相交於一直線且三交線互相平行,令
\( \Delta=\Bigg\vert\; \matrix{a_1 & a_1 & c_1 \cr a_2 & b_2 & c_2 \cr a_3 & b_3 & c_3} \Bigg\vert\; \),\( \Delta_x=\Bigg\vert\; \matrix{d_1 & a_1 & c_1 \cr d_2 & b_2 & c_2 \cr d_3 & b_3 & c_3} \Bigg\vert\; \),\( \Delta_y=\Bigg\vert\; \matrix{a_1 & d_1 & c_1 \cr a_2 & d_2 & c_2 \cr a_3 & d_3 & c_3} \Bigg\vert\; \),\( \Delta_z=\Bigg\vert\; \matrix{a_1 & a_1 & d_1 \cr a_2 & b_2 & d_2 \cr a_3 & b_3 & d_3} \Bigg\vert\; \),
請證明:\( \Delta=0\)且\(\Delta_x,\Delta_y,\Delta_z \)至少一個不為0
三平面兩兩相交一直線,且三直線平行,證明\(\Delta=0\),\(\Delta x,\Delta y,\Delta z\)至少有一個不為0
(102武陵高中,
https://math.pro/db/viewthread.php?tid=1604&page=1#pid8139)
4.
證明:\(\displaystyle 87<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots+\frac{1}{\sqrt{2019}}<89\)
https://math.pro/db/thread-156-1-1.html