回復 39# maddux0706 的帖子
3.
四邊形\(ABCD\)中,\(\overline{AB}=2\sqrt{2}\),\(\overline{BC}=4\),\(\overline{CD}=3\),\(∠B=45^{\circ}\),\(∠C=90^{\circ}\),點\(P\)在\(\overline{AB}\)上,點\(Q\)在\(\overline{CD}\)上,若\(\overline{PQ}\)平分四邊形\(ABCD\)的面積,則\(\overline{PQ}\)的最小值為 。
[解答]
\(\begin{align}
& ABCD=7 \\
& PQCB=\Delta CQP+\Delta CBP=\frac{1}{2}xy+\left( 8-2x \right)=\frac{7}{2} \\
& xy=4x-9 \\
& y-4=-\frac{9}{x} \\
& {{\overline{PQ}}^{2}}={{x}^{2}}+{{\left( 4-x-y \right)}^{2}} \\
& ={{x}^{2}}+{{\left[ x+\left( y-4 \right) \right]}^{2}} \\
& ={{x}^{2}}+{{\left( x-\frac{9}{x} \right)}^{2}} \\
& =2{{x}^{2}}+\frac{81}{{{x}^{2}}}-18 \\
& \ge 2\sqrt{2\times 81}-18 \\
& =18\sqrt{2}-18 \\
\end{align}\)
等號成立於\(x=\frac{3}{\sqrt[4]{2}}\)
此時\(\overline{PQ}=3\sqrt{2\sqrt{2}-2}\)