引用:
原帖由 bugmens 於 2014-6-7 06:11 PM 發表
1.
若z為複數,且滿足\( \displaystyle z+\frac{1}{z}=1 \),則\( \displaystyle z^{103}+\frac{1}{z^{103}}= \) 。
[公式]
若\( \displaystyle z+\frac{1}{z}=2 cos \theta \),則\( \displaystyle z^n+\frac{1}{z^n}= ...
請問bugmens老師!
看到題目時所想到的是利用柯西先將PA^2+PB^2+PC^C的最小值轉換成求PA+PB+PC的最小值
即P為費馬點,但由老師所述當P為重心時PA^2+PB^2+PC^2有最小值,所以就此題而言重心會等於費馬點嗎!?
但由費馬點的找法小弟看不出費馬點會是重心,請問老師小弟的想法哪裡出問題!?謝謝