引用:
原帖由 sherlock 於 2014-2-27 11:53 AM 發表
煩請有空的大大幫忙解答,謝謝!
設此正多邊形為 \(n\) 邊形,且外接圓半徑為 \(R\),
則 \(\displaystyle \overline{AB}=2R\sin\frac{\pi}{n},\overline{AC}=2R\sin\frac{2\pi}{n},\overline{AD}=2R\sin\frac{3\pi}{n}\)
由題意可知,\(\displaystyle \frac{1}{2R\sin\frac{\pi}{n}}=\frac{1}{2R\sin\frac{2\pi}{n}}+\frac{1}{2R\sin\frac{3\pi}{n}}\)
\(\displaystyle \Rightarrow \sin\frac{2\pi}{n}\cdot\sin\frac{3\pi}{n}=\sin\frac{\pi}{n}\cdot\sin\frac{3\pi}{n}+\sin\frac{2\pi}{n}\cdot\sin\frac{\pi}{n}\)
\(\displaystyle \Rightarrow \sin\frac{2\pi}{n}\cdot\left(\sin\frac{3\pi}{n}-\sin\frac{\pi}{n}\right)=\sin\frac{\pi}{n}\cdot\sin\frac{3\pi}{n}\)
\(\displaystyle \Rightarrow \sin\frac{2\pi}{n}\cdot\left(2\cos\frac{2\pi}{n}\cdot\sin\frac{\pi}{n}\right)=\sin\frac{\pi}{n}\cdot\sin\frac{3\pi}{n}\)
\(\displaystyle \Rightarrow \sin\frac{\pi}{n}\cdot\left(2\cos\frac{2\pi}{n}\cdot\sin\frac{2\pi}{n}\right)=\sin\frac{\pi}{n}\cdot\sin\frac{3\pi}{n}\)
\(\displaystyle \Rightarrow \sin\frac{\pi}{n}\cdot\sin\frac{4\pi}{n}=\sin\frac{\pi}{n}\cdot\sin\frac{3\pi}{n}\)
因為 \(\displaystyle \sin\frac{\pi}{n}\neq0\)
所以 \(\displaystyle \sin\frac{4\pi}{n}=\sin\frac{3\pi}{n}\)
\(\displaystyle \Rightarrow \frac{4\pi}{n}+\frac{3\pi}{n}=\pi\)
\(\Rightarrow n=7\)