發新話題
打印

93國立大里高中

93國立大里高中

適逢中秋節連假,我找一些比較古早的考古題讓各位練習

109.6.14補充
某圓內接六邊形\(ABCDEF\),其中\(\overline{AB}=\overline{BC}=\overline{CD}=1\)、\(\overline{DE}=\overline{EF}=\overline{FA}=2\),請問此六邊形的面積為何?
(A)13 (B)\(13\sqrt{3}\) (C)\(\displaystyle \frac{13\sqrt{3}}{2}\) (D)\(\displaystyle \frac{13\sqrt{3}}{4}\)
(109新北市國中聯招,https://math.pro/db/thread-3346-1-1.html)

附件

93國立大里高中.pdf (195.14 KB)

2011-9-10 08:46, 下載次數: 9071

93大里高中.gif (175.72 KB)

2011-9-10 08:46

93大里高中.gif

TOP

5.
在半徑為1的圓上取6個六等分點,從中任取三點A,B,C,則△ABC面積的期望值為?

在半徑=1之圓上作內接正六邊形ABCDEF,由ABCDEF任取相異三點作△之頂點,求此種△面積之期望值?
(高中數學101 P286)

在半徑為1的圓上作內接正六邊形ABCDEF,由ABCDEF任取相異三點圍三角形,求此種三角形面積的期望值?
(100麗山高中,https://math.pro/db/thread-1138-1-1.html)
http://www.shiner.idv.tw/teacher ... &start=30#p7112

12.[x]表不大於x的最大整數,則\( \displaystyle \Bigg[\; \sum_{k=1}^{100} \frac{1}{\sqrt{k}} \Bigg]\; \)
https://math.pro/db/thread-156-1-1.html

1.
ABCDEF為一圓內接六邊形,\( \overline{AB}=\overline{BC}=\overline{CD}=a \),\( \overline{DE}=\overline{EF}=\overline{FA}=b \),用a,b表六邊形之面積?

類似題
Hexagon ABCDEF is inscribed in a circle, with \( \overline{AB}=\overline{BC}=\overline{CD}=2 \) and \( \overline{DE}=\overline{EF}=\overline{FA}=1 \).
Find the radius of the circle.

TOP

發新話題