回復 14# thankquestion 的帖子
4. 數列 \(\displaystyle <a_n> , a_1=1,a_2=\frac{1}{3}\), 若 \(\displaystyle a_na_{n+1}+a_{n+1}a_{n+2}=2a_na_{n+2}\) , 求 \(\displaystyle a_n= ?\) 答: \(\displaystyle \frac{1}{2n-1} \)
參考解法:
等式兩邊同除以 \(\displaystyle a_na_{n+1}a_{n+2}\) 之後,就可以看出數列 \(\displaystyle <\frac{1}{a_n}> \) 是一個等差數列
\(\displaystyle \frac{a_na_{n+1}+a_{n+1}a_{n+2}}{a_na_{n+1}a_{n+2}}=\frac{2a_na_{n+2}}{a_na_{n+1}a_{n+2}}\)
\(\displaystyle \frac{1}{a_{n+2}}+\frac{1}{a_n}=\frac{2}{a_{n+1}}\)
又因為 \(\displaystyle a_1=1,a_2=\frac{1}{3}\), 所以數列 \(\displaystyle <\frac{1}{a_n}> \) 是一個公差為 2 的等差數列,即1,3,5,7,9...
故 \(\displaystyle <a_n>=1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\frac{1}{9},...\)
[ 本帖最後由 Joy091 於 2011-7-8 05:32 PM 編輯 ]