發新話題
打印

103師大附中

想問11題,沒什麼頭緒

另外第七題我是用柯西去解,不知道有沒有更容易的

TOP

問錯了,是第六題…………

TOP

第 6 題
分別找 A 和 B 在平面 E 上的投影點 C 和 D
則 P 為 CD 中點時,PA^2 + PB^2 有最小值

TOP

回復 22# acc10033 的帖子

填6. 樓上  thepiano 大的方法,算是使用中線定理的結果

這類的題目,考古題裡也出現了不少

100中科實中:P 為球面 \( S:\,(x-1)^{2}+(y-2)^{2}+z^{2}=4 \) 上的動點,\( A(3,4,0)、B(3,3,2) \) 為球面外兩點,求 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最大值。

100南港高工:設 \( A(-2,1,3),\, B(0,3,-3) \),P 為直線 \( L:\,\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-2}{1} \) 上一點,求 \( \overline{AP}^{2}+\overline{BP}^{2} \) 有最小值時,此時 P 點的坐標為 _____ 。

100彰化藝術暨田中高中:空間中有三個點 \( A(-1,2,5), B(-2,1,2), P(0,b,c) \),則 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最小值為 _____。

100文華高中代理:設 \( A(4,3,2), B(2,1,4) \),點 P 在平面 \( E:\, x-2y-2z=-1 \) 上移動,則 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最小值為 _____ 。

[ 本帖最後由 tsusy 於 2014-5-25 09:20 AM 編輯 ]
網頁方程式編輯 imatheq

TOP

回復 20# GGQ 的帖子

類似題是否可提供一下呢?^^"感謝

TOP

回復 21# acc10033 的帖子

填充題第十一題
我的第一個想法,第二步驟,用帶數字猜答案。我帶K=0(做猜答案的動作),
最後參數式\(t\)的範圍要註明。t是任意整數,但不能等於0,因為等於0。
P點的軌跡就剛好跟A點重合。這樣就不能構成三角形ABP

和寸絲老師,在討論這個題目。他有提到另外一個想法。嚴謹度更高。
提示:三垂線定理
容我偷懶,放圖片。


第一題
先把數字分兩類  \(A = \left\{ {1,2,3,4,5} \right\}\),\(B = \left\{ {6,7,8,9} \right\}\)
\(P = \frac{{C_1^5C_2^4 + C_3^4}}{{C_3^9}} = \frac{{17}}{{42}}\)   第一類選一個且第二類選二個 + 第二類選三個

[ 本帖最後由 shingjay176 於 2014-5-26 03:20 PM 編輯 ]

附件

DSC_0008_副本.jpg (371.34 KB)

2014-5-6 21:51

DSC_0008_副本.jpg

DSC_0007.JPG (349.16 KB)

2014-5-6 22:17

DSC_0007.JPG

TOP

回復 25# natureling 的帖子

考古題 瑋岳大大有解似題目(100年中壢 第6題)  供練習  謝謝
https://math.pro/db/thread-1119-2-2.html

還有 100香山 填充13
https://math.pro/db/thread-1186-3-7.html

[ 本帖最後由 GGQ 於 2014-5-7 07:15 AM 編輯 ]

TOP

回復 26# shingjay176 的帖子

第七題 解不等式\(\left( {{{103}^{2 - x}} - 103} \right)\left( {{4^x} - 9 \times {2^{x - 1}} + 2} \right) \ge 0\)得____

\[\begin{array}{l}
\left( {{{103}^{2 - x}} - 103} \right)\left( {{4^x} - 9 \times {2^{x - 1}} + 2} \right) \ge 0\\
\left( 1 \right)\;\;{103^{2 - x}} - 103 \ge 0\; \wedge \;\;\left( {{{\left( {{2^x}} \right)}^2} - \frac{9}{2} \times {2^x} + 2} \right) \ge 0\\
(2)\;\;{103^{2 - x}} - 103 \le 0\; \wedge \;\left( {{{\left( {{2^x}} \right)}^2} - \frac{9}{2} \times {2^x} + 2} \right) \le 0
\end{array}\]

上面兩種狀況取聯集,就可以找到最後的答案。

TOP

回復 28# shingjay176 的帖子

第九題 求 \(\sqrt[5]{{103 - x}} + \sqrt[5]{{x - 21}} = 2\) 的所有實數解為

令 \(A = \sqrt[5]{{103 - x}}\;\;\;B = \sqrt[5]{{x - 21}}\),\({A^5} + {B^5} = 82\)

\[\begin{array}{l}
{2^5} = {\left( {A + B} \right)^5}\\
\;\;\;\; = {A^5} + 5{A^4}B + 10{A^3}{B^2} + 10{A^2}{B^3} + 5A{B^4} + {B^5}\\
\;\;\;\; = \left( {{A^5} + {B^5}} \right) + 5AB\left( {{A^3} + {B^3}} \right) + 10\left( {A + B} \right)\\
\;\;\;\; = 82\;\;\;\;\;\;\;\;\;\;\; + 5AB\left\{ {{{\left( {A + B} \right)}^3} - 3AB\left( {A + B} \right)} \right\} + 10{\left( {AB} \right)^2} \times 2\\
\;\;\;\; = 82 + 5AB\left\{ {{2^3} - 3AB\left( 2 \right)} \right\} + 20{\left( {AB} \right)^2}\\
\Rightarrow {\left( {AB} \right)^2} - 4\left( {AB} \right) - 5 = 0\\
\;\;\;AB =  - 1\;\; \vee \;\;AB = 5
\end{array}\]

(1)
\(\begin{array}{l}
\sqrt[5]{{\left( {103 - x} \right)}}\sqrt[5]{{\left( {x - 21} \right)}} = 5\\
\sqrt[5]{{ - {x^2} + 124x - 2163}} = 5\\
- {x^2} + 124x - 2163 = 3125\\
{x^2} - 124x + 5288 = 0\\
{x^2} - 2\left( {62} \right)\left( x \right) + {62^2} =  - 5288 + 3844
\end{array}\)  
無實數解

(2)
\(\begin{array}{l}
\sqrt[5]{{\left( {103 - x} \right)}}\sqrt[5]{{\left( {x - 21} \right)}} =  - 1\\
\sqrt[5]{{ - {x^2} + 124x - 2163}} =  - 1\\
- {x^2} + 124x - 2163 =  - 1\\
{x^2} - 124x + 2162 = 0\\
{x^2} - 2\left( {62} \right)\left( x \right) + {62^2} =  - 2162 + 3844\\
{x^2} - 2\left( {62} \right)\left( x \right) + {62^2} = 1682\\
x = 62 \pm \sqrt {1682}  = 62 \pm 29\sqrt 2
\end{array}\)

[ 本帖最後由 shingjay176 於 2014-5-7 05:11 PM 編輯 ]

TOP

想請問計算那兩題偵錯題該怎麼下手呢?

TOP

發新話題