Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

98花蓮高工

98花蓮高工

聽說很多都是考古題,po上一些我記得的

  • 已知
    x+y+z=2x2+y2+z2=3x3+y3+z3=4
    試求 x4+y4+z4.
  • 已知 a+b=8, ax+by=9, ax2+by2=57, ax3+by3=111, 試求 ax4+by4
  • 假設 y=logax, 其中 0a21, 已知 ABC 三點的 x 坐標分別為 mm+2m+4, 試求 ABC 的最小值.
  • 四邊形 ABCD, 已知AB=16, BC=25, CD=15, sinB=2516, sinC=54, 試求 AD.
  • 已知 0x1x2x3,  試證
    sinx1+sinx2+sinx33sin3x1+x2+x3

TOP

已知x+y+z=2x2+y2+z2=3x3+x3+z3=4,試求x4+x4+z4

(我的教甄準備之路 利用根與係數的關係解聯立方程式)
https://math.pro/db/viewthread.php?tid=661&page=1#pid1076


已知a+b=8ax+by=9ax2+by2=57ax3+by3=111,求ax4+by4
補充一題
設c,d,x,y為實數,滿足ax+by=3ax2+by2=7ax3+by3=16ax4+by4=42,求cx5+dy5之值
連結已失效h ttp://forum.nta.org.tw/examservice/showthread.php?t=47266
連結已失效h ttp://forum.nta.org.tw/examservice/showthread.php?t=26666

Find ax5+by5 if the real numbers abxand y satisfy the equations ax+by=3ax2+by2=7ax3+by3=16ax4+by4=42
(1990AIME,https://artofproblemsolving.com/ ... Problems/Problem_15
99鳳新高中,https://math.pro/db/thread-974-1-1.html)


這裡補充用遞迴的方法
An=axn+byn
axn+1+byn+1=(x+y)(axn+byn)xy(axn1+byn1)
111=(x+y)(57)xy(9)57=(x+y)(9)xy(8)
x+y=1xy=6An+1=An+6An1
ax4+by4=(ax3+by3)+6(ax2+by2)=453

2009.9.27補充
http://www.yll.url.tw/viewtopic.php?t=23885

2010.3.27補充
98學年度第二學期中山大學雙週一題
http://www.math.nsysu.edu.tw/~problem/2010s/2Q.pdf

2010.3.29補充
第3,4題
http://www.shiner.idv.tw/teachers/viewtopic.php?p=3014

設實數c,d,x,y滿足cx+dy=3cx3+dy3=16cx2+dy2=3cx4+dy4=16試求:cx5+dy5之值。
(94高中數學能力競賽 高屏區筆試一)

2010.6.27補充
The sum of three numbers is 6, the sum of their squares is 8, and the sum of their cubes is 5. What is the sum of their fourth powers?
連結已失效h ttp://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=354265

101.6.28補充
abxyRa+b=4ax+by=13ax2+by2=41ax3+by3=127,求ax4+by4
(101中正高中二招,https://math.pro/db/thread-1446-1-1.html)

103.5.15補充
a+b=1ax+by=1ax2+by2=5ax3+by3=13,求ax5+by5之值為   
(103彰化高中,https://math.pro/db/thread-1890-1-1.html)

104.5.2補充
已知實數xyab滿足ax+by=1ax2+by2=2ax3+by3=8ax5+by5=100,則ax4+by4=   
(104鳳山高中,https://math.pro/db/thread-2244-1-1.html)

TOP

請問

請問如何解第一題 ? 在所附的網址裡面只有答案,我找不到過程?

TOP

引用:
原帖由 mandy 於 2010-5-27 12:18 AM 發表
請問如何解第一題 ? 在所附的網址裡面只有答案,我找不到過程?
先由已知條件與乘法公式求出 xy+yz+zxxyz 的值,

然後利用

x4+y4+z4=x+y+zx3+y3+z3xy+yz+zxx2+y2+z2+xyzx+y+z 

即可得 x4+y4+z4 的值.

多喝水。

TOP

請問

請問第3,4題怎麼做 ?

TOP

第 4 題

四邊形 ABCD, 已知AB=16, BC=25, CD=15, sinB=2516, sinC=54, 試求 AD.

解答:

cosB=1sin2B=25341 

cosC=1sin2C=53 

B(00)C(250),則

A(16cosB16sinB)D=(25+15cosC15sinC)



可得 AD 之值.

答案應該有四個.






至於第 3 題,題目的敘述是不是有缺漏呀?題意不太清楚。==

多喝水。

TOP

發新話題
最近訪問的版塊