第 5 題
有一邊長為2的正四面體\(ABCD\),設\(A'\)為\(A\)對平面\(BCD\)的對稱點,\(B'\)為\(B\)對平面\(ACD\)的對稱點,試求出四面體\(A'CB'D\)的體積維何?
[解答]
定座標 B(0,0,0)、C(2,0,0)、D(1,√3,0)、A(1,(1/3)√3,(2/3)√6)
△ACD 重心 G(4/3,(4/9)√3,(2/9)√6)
A'(1,(1/3)√3,(-2/3)√6)、B'(8/3,(8/9)√3,(4/9)√6)
平面 A'CD 的方程式:-2√2x - (2/3)√6y + (2/3)√3z + 4√2 = 0
△A'CD 面積 = △ACD 面積 = √3
B' 到平面 A'CD 的距離 = (10/27)√6
四面體 A'CB'D 的體積 = (1/3) * √3 * (10/27)√6 = (10/27)√2
114.5.14補充
已知一個邊長為2正四面體\(ABCD\),且\(M\)是\(\overline{CD}\)中點,設點\(A\)對於平面\(BCD\)的對稱點為\(A'\),點\(B\)對於平面\(ACD\)的對稱點為\(B'\),求\(\triangle A'MB'\)的面積為
。
(114內湖高中二招,
https://math.pro/db/thread-3998-1-1.html)
114.5.27補充
給定一個邊長為9的正四面體\(ABCD\),設\(A'\)為\(A\)對於平面\(BCD\)的對稱點,\(B'\)為\(B\)對於平面\(ACD\)的對稱點,則線段\(\overline{A'B'}\)之長為
。
(114屏東高中,
https://math.pro/db/thread-4002-1-1.html)