9.
求\( \displaystyle \frac{1}{C_3^3}+\frac{2}{C_3^4}+\frac{3}{C_3^5}+\ldots+\frac{n}{C_3^{n+2}}+\ldots= \)?
[解答]
化簡一下...拆項對消即可
\( \displaystyle \frac{k}{C_3^{k+2}}=\frac{k}{\frac{(k+2)!}{(k-1)!3!}}=\frac{6}{(k+1)(k+2)}=6 \left( \frac{1}{k+1}-\frac{1}{k+2} \right) \)
原式\( \displaystyle =6 \sum_{k=1}^{\infty} \left( \frac{1}{k+1}-\frac{1}{k+2} \right)=\ldots=3 \)
114.5.30補充
無窮級數\(\displaystyle \frac{1}{C_3^3}+\frac{2}{C_3^4}+\frac{3}{C_3^5}+\ldots+\frac{k}{C_3^{k+2}}+\ldots\)之和為
。
(114屏東高中,
https://math.pro/db/thread-4002-1-1.html)