回復 85# farewell324 的帖子
設 r 為正整數,
\displaystyle 1^r+2^r+3^r+\cdots+n^r=\sum_{k=1}^n k^r=\sum_{k=1}^n \left(k\left(k-1\right)\left(k-2\right)\cdots\left(k-r+1\right)+O\left(k^{r-1}\right)\right)
\displaystyle =\sum_{k=1}^n k\left(k-1\right)\left(k-2\right)\cdots\left(k-r+1\right)+\sum_{k=1}^n O\left(k^{r-1}\right)
\displaystyle =\sum_{k=1}^n \frac{1}{r+1}\Bigg(\left(k+1\right)k\left(k-1\right)\left(k-2\right)\cdots\left(k-r+1\right)-k\left(k-1\right)\left(k-2\right)\cdots\left(k-r+1\right)\left(k-r\right)\Bigg) + O\left(n^r\right)
\displaystyle =\frac{1}{r+1}\Bigg(\left(n+1\right)n\left(n-1\right)\left(n-2\right)\cdots\left(n-r+1\right)-0\Bigg)+O\left(n^r\right)
\displaystyle =\frac{1}{r+1}\Bigg(n^{r+1}+O\left(n^r\right)\Bigg)+O\left(n^r\right)
\displaystyle =\frac{1}{r+1}\cdot n^{r+1}+O\left(n^r\right)