Board logo

標題: 110香山高中 [打印本頁]

作者: bugmens    時間: 2021-7-28 11:05     標題: 110香山高中

 

附件: 110香山高中.pdf (2021-7-28 11:05, 547.51 KB) / 該附件被下載次數 1625
https://math.pro/db/attachment.php?aid=6074&k=9701aa3636e2c2a499a388a7c828e673&t=1660971698
作者: bugmens    時間: 2021-7-28 11:05

2.
已知正數\(a,b\)滿足條件\(log_9 a=log_{12}b=log_{16}(a+b)\),則\(\displaystyle \frac{b}{a}\)之值為何?
(A)\(\displaystyle \frac{4}{3}\) (B)\(\displaystyle \frac{8}{5}\) (C)\(\displaystyle \frac{1+\sqrt{3}}{2}\) (D)\(\displaystyle \frac{\sqrt{5}-1}{2}\) (E)\(\displaystyle \frac{1+\sqrt{5}}{2}\)

設\( p,q \in R \)且\( p>0,q>0 \),若\( log_9 p=log_{12}q=log_{16}(p+q) \),則\( \displaystyle \frac{q}{p} \)之值介於下列哪一各區間?
(A) \( \displaystyle (1,\frac{3}{2}) \) (B) \( \displaystyle ( \frac{3}{2},2) \) (C) \( \displaystyle (2,\frac{5}{2}) \) (D) \( \displaystyle ( \frac{5}{2},3 ) \) (E) \( \displaystyle ( 3,\frac{7}{2} ) \)
(100彰化藝術高中,田中高中,https://math.pro/db/viewthread.php?tid=1152&page=1#pid3661)

Suppose that \(p\) and \(q\) are positive numbers for which\(log_{9}p=log_{12}q=log_{16}(p+q)\).What is the value of \(\displaystyle \frac{q}{p}\)?
(A)\(\displaystyle \frac{4}{3}\) (B)\(\displaystyle \frac{1+\sqrt{3}}{2}\) (C)\(\displaystyle \frac{8}{5}\) (D)\(\displaystyle \frac{1+\sqrt{5}}{2}\) (E)\(\displaystyle \frac{16}{9}\)
(1988AHSME,https://artofproblemsolving.com/ ... Problems/Problem_26)

4.
試問\(\displaystyle \lim_{n\to \infty}\left(\frac{sin\frac{\pi}{n}}{n}+\frac{sin\frac{2\pi}{n}}{n}+\frac{sin\frac{3\pi}{n}}{n}+\ldots+\frac{sin\frac{n\pi}{n}}{n}\right)\)之值為下列何者?
(A)0 (B)1 (C)2 (D)\(\displaystyle \frac{1}{\pi}\) (E)\(\displaystyle \frac{2}{\pi}\)
(105桃園高中,weiye解題https://math.pro/db/viewthread.php?tid=2489&page=4#pid16492)

5.
設\(n\)為正整數,則\(C_1^n+3C_2^n+3^2C_3^n+3^3C_4^n+\ldots+3^{n-1}C_n^n=\)?
(A)\(\displaystyle \frac{4^n-1}{3}\) (B)\(\displaystyle \frac{4^n}{3}\) (C)\(\displaystyle \frac{4^n+1}{3}\) (D)\(4^n-1\) (E)\(4^n\)

8.
已知實數\(x,y\)滿足條件\(\displaystyle sinx+siny=\frac{\sqrt{2}}{2}\)與\(\displaystyle cosx+cosy=\frac{\sqrt{6}}{2}\),則\(sin(x+y)\)之值為何?
(A)\(\displaystyle \frac{\sqrt{2}}{4}\) (B)\(\displaystyle \frac{\sqrt{3}}{4}\) (C)1 (D)\(\displaystyle \frac{\sqrt{2}}{2}\) (E)\(\displaystyle \frac{\sqrt{3}}{2}\)

令\(a\)與\(b\)皆為實數且滿足\(\displaystyle sin a+sin b=\frac{\sqrt{2}}{2}\),\(\displaystyle cos a+cos b=\frac{\sqrt{6}}{2}\),試求出\(sin(a+b)\)之值。
(96中山大學雙週一題第1題,連結有三種解法http://www.math.nsysu.edu.tw/~problem/2008s/962Q&A.htm)

15.
\(\Delta ABC\)中,\(\displaystyle tan\angle BAC=\frac{22}{7}\),過頂點\(A\)作\(\overline{BC}\)邊上的高交\(\overline{BC}\)於\(D\)點,使得\(\overline{BD}=3,\overline{DC}=17\),則\(\Delta ABC\)的面積為何?
(A)110 (B)120 (C)170 (D)220 (E)510

In triangle \(ABC\), \(\displaystyle \tan \angle CAB = \frac{22}{7}\), and the altitude from \(A\) divides \(BC\) into segments of length 3 and 17. What is the area of triangle \(ABC\)?
(1988AIME,https://artofproblemsolving.com/ ... _Problems/Problem_7)

2.(D)
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{1}{2}\)
(我的教甄準備之路 裂項相消,https://math.pro/db/viewthread.php?tid=661&page=2#pid1678)
[提示]
\(\displaystyle \frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}\times \frac{(n+1)\sqrt{n}-n\sqrt{n+1}}{(n+1)\sqrt{n}-n\sqrt{n+1}}=\frac{(n+1)\sqrt{n}-n\sqrt{n+1}}{n(n+1)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
作者: peter0210    時間: 2021-8-5 16:04

填充14

圖片附件: 未命名.png (2021-8-5 16:04, 50.05 KB) / 該附件被下載次數 803
https://math.pro/db/attachment.php?aid=6093&k=f3e05cdd22f0d3ffe3b6902d1a16264d&t=1660971698


作者: anyway13    時間: 2021-8-11 21:17     標題: 請問第13題

板上老師好,請問第13題要怎麼處理完全平方阿???
作者: thepiano    時間: 2021-8-11 22:18     標題: 回復 4# anyway13 的帖子

2007 TRML 團體賽
請參考 https://math.pro/db/thread-1483-1-14.html
http://www.shiner.idv.tw/teachers/viewtopic.php?t=2551

[ 本帖最後由 thepiano 於 2021-8-11 22:24 編輯 ]
作者: anyway13    時間: 2021-8-11 23:01     標題: 回復 5# thepiano 的帖子

謝謝鋼琴老師指點。原來老師十年前就回答了。
作者: anyway13    時間: 2021-8-14 14:08     標題: 請問多選三選項(2)

板上老師好

A可對角化時表示存在Q (可逆) such that Q^(-1)AQ=D
又AB=BA

選項說B是可對角化是錯的...可否請知道的老師舉一下反例?想很久
作者: thepiano    時間: 2021-8-14 16:13     標題: 回復 7# anyway13 的帖子

讓 A 是單位矩陣
作者: anyway13    時間: 2021-8-15 01:12     標題: 回復 8# thepiano 的帖子

真妙!  就是想不到    謝謝鋼琴老師
作者: enlighten0626    時間: 2021-8-20 16:02

請教多選4,是否有直接的算法?(我是看選項推算)
作者: Lopez    時間: 2021-8-20 19:18     標題: 回復 10# enlighten0626 的帖子

多選4

作者: enlighten0626    時間: 2021-8-21 16:49     標題: 回復 11# Lopez 的帖子

感謝解惑
作者: satsuki931000    時間: 2021-9-22 10:54

7.
自己Memo一下
不失一般性假設\(\displaystyle p+q=m^2 , p+7q=n^2\)
可得\(\displaystyle 6q=2\times 3\times q =(n+m)(n-m)\)
組合一下可得\(2n=6q+1,3q+2,2q+3,q+6\),易知\(\displaystyle q=2\)
此時\(n=4\),代回去可得\(m=2\)
所以得到唯一解\(\displaystyle (p.q)=(2,2)\)

[ 本帖最後由 satsuki931000 於 2022-1-9 11:05 編輯 ]




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0