19.已知複數\( z_1 \),\( z_2 \)滿足以下條件:\( |\ z_1+z_2 |\ =\sqrt{3} |\ z_1 |\ \),且
\( \displaystyle 0<Arg(\frac{z_1+z_2}{z_1})=Arg(\frac{z_2}{z_1+z_2})<\frac{\pi}{2} \),求\( \displaystyle \frac{z_2}{z_1}= \)?
[補充]
PTT有代數的解法,這裡補充幾何的解法
令\( \displaystyle \frac{z_2}{z_1}=Z \) , \( \displaystyle \frac{z_1+z_2}{z_1}=1+Z \) , \( \displaystyle \frac{z_2}{z_1+z_2}=\frac{Z}{1+Z} \)
\( \displaystyle |\ 1+\frac{z_2}{z_1} |\ =\sqrt{3} \) , \( 1+Z \)的絕對值為\( \sqrt{3} \)
\( \displaystyle 0<Arg(\frac{z_1+z_2}{z_1})<\frac{\pi}{2} \) , 設\( 1+Z \)的主幅角為\( \theta \)
在複數平面上以A點代表1+Z,\( \overline{OA}=\sqrt{3} \),向左平移1的B點代表Z,C點代表\( \displaystyle \frac{Z}{1+Z} \)
根據極式的相除運算,\( \displaystyle \frac{Z}{1+Z} \)的主幅角為Z和1+Z的主幅角相減
\( ∠COX=∠BOX-∠AOX \) , \( \theta=∠BOX-\theta \) , \( ∠BOX=2 \theta \) , \( ∠BOA=\theta \)
故△AOB為等腰三角形 , \( \overline{AB}=\overline{BO}=1 \) , \( \overline{AO}=\sqrt{3} \),得\( \theta=30^o \)
\( \displaystyle \frac{z_2}{z_1}=1(cos60^o+i sin60^o)=\frac{1}{2}+\frac{\sqrt{3}}{2}i \)
103.02.20補充
當初的PTT文章可以到
https://math.pro/db/viewthread.php?tid=661&page=2#pid7411
下載 PTT歷屆教甄試題.rar (204.46 KB),其中 99高雄市聯招.html 就是代數解法