發新話題
打印

99彰化藝術高中

謝謝

TOP

要是大家眼力都有這麼好就好了,基本上,個人認為,這題是一題爛題目

類似題,次數比較低,倒是曾經硬暴(代換)因式分解解過它
網頁方程式編輯 imatheq

TOP

相同題目,主題合併討論。

多喝水。

TOP

請問一下填充第2題

請問一下
本題並沒有給a_1
那該如何下手??
謝謝!
   永無止境的追尋

玩弄數學  而不是被數學玩弄

TOP

TOP

回復 24# nianzu 的帖子

填充第 2 題:
正整數的遞增數列,\(a_1,a_2,a_3,\ldots\)符合\(a_{n+2}=a_{n+1}+a_n\),其中\(n\ge 1\)。若\(a_7=120\),求\(a_8=\)   
[解答]
令 \(a_1=a, a_2=b\)

則 \(a_7=5a+8b=120\)

可知滿足 \(a,b\) 為正整數且 \(a<b\) 的數對 \((a,b)\) 只有一組解 \((8,10)\)

因此 \(a_8=8a+13b=194.\)



補充說明何以知道 \((a,b)\) 只有唯一一組解:

\(5a+8b=120\) 可先找得整數數對 \((a,b)\) 的通解 \((a,b)=(8t+24, -5t)\),其中 \(t\) 為整數,

再解得滿足條件 \(b>a>0\) 的整數 \(t=-2\),因此 \((a,b)=(8,10)\)

多喝水。

TOP

回復 26# weiye 的帖子

謝謝鋼琴老師   瑋岳老師!!
我了解了!!!
遞迴的題目真的好多!!而且解法真的也好多!!
謝謝老師們解惑~~
天氣冷~~請多保暖^^
   永無止境的追尋

玩弄數學  而不是被數學玩弄

TOP

回復 4# 老王 的帖子

請教老王大大  你附上的連結已經不能使用了  
想請教還有什麼地方可以參考那相關的知識
謝謝!

TOP

回復 11# icesnow1129 的帖子

17.
\(\theta\)為銳角,\(\displaystyle \frac{16}{sin^6 \theta}+\frac{81}{cos^6\theta}=625\),求\(tan\theta=\)   
[解答]
我也是測試了好幾種的廣義柯西不等式。
右手邊內積要只剩下數字。利用\(sin^2x+cos^2x=1\)
因此左手邊要有三組,跟原來那一組分母的6次方要消去。
因此就抓4次方的廣義柯西不等式

附件

157.jpg (208.76 KB)

2014-4-17 23:56

157.jpg

TOP

回復 1# bugmens 的帖子

請教第11題,http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&t=1528
設正面出現x次,反面y次,則
x+y=10,x-y=6,x=8,y=2
分母=C(10,2)=45,分子=C(9,2)-C(9,1)=27,則機率=27/45=3/5

C(9,2)是否為:正OOOO OOOOO 九個位置取兩個放"反"(即第一擲甲贏)
C(9,1) 就看不懂是甚麼意思了....

感謝。

TOP

發新話題