引用:
原帖由 coabelian 於 2012-1-9 09:47 AM 發表
想請教板上的各位大大,不知道此題該如何用比較簡易的方式可以快速的讓高中生了解
題目如下:
求與橢圓x^2/9 +y^2/4 =1相切且互相垂直的兩切線交點之軌跡方程式
雖然小弟用硬算的方式有得到解答,但是實在覺得太 ...
這個軌跡叫"蒙日圓"
是一位法國幾何學家:蒙日(G.Monge,1746-1818)發現的
當時是否用下面方式來證,就不得而知了
(若是知道的網友請補充)
假設L1,L2為互相垂直的兩切線,其率斜率分別為m,-1/m(不是水平線,也不是垂直線)
則 L1: y=mx+(9*m^2+4)^0.5 ----------------(1)
L2: y=(-1/m)x +(9*(-1/m)^2+4)^0.5-------------(2)
(1)=> y-mx=(9*m^2+4)^0.5---------------(3)
(2)=> my+x=(9+4*m^2)^0.5---------------(4)
(3)^2+(4)^2 得 (y-mx)^2+(my+x)^2 =9(m^2+1)+4(m^2+1)
(x^2+y^2)*(m^2+1)=13*(m^2+1)
解得x^2+y^2=9+4=13-------------(*)
又當L1為垂直線或水平線,與L2的交點為
(3,2),(-3,2),(-3,-2),(3,-2)均為(*)的解
所求軌跡為一圓,其方程式為x^2+y^2=13