回覆 10# Joanna 的帖子
計算3
令\(\Gamma_n\)為直角坐標平面上方程式\(|\;x|\;^n+|\;y|\;^n=2^n\)的圖形。
(1)試描繪\(\Gamma_1\)及\(\Gamma_2\)。
(2)設\(x+y=a_n\)是\(\Gamma_n\)的切線,他們相切於第一象限。試求\(\displaystyle \lim_{n\to \infty}a_n\)。
(3)令\(|\;\Gamma_n|\;\)表示\(\Gamma_n\)所圍平面區域(原點在其內部)的面積。試求\(\displaystyle \lim_{n\to \infty}|\;\Gamma_n|\;\),應說明理由。
[解答]
(2)
因為\(|x|^n+|y|^n=2^n\)對稱\(y=x\),若\(x+y=a_n\)的切點在\(y=x\)與y軸之間,必因對稱性在\(y=x\)與x軸之間有交點,所以切點在y=x上,得切點\((\displaystyle\frac{a_n}{2},\frac{a_n}{2})\)
代回\(\Gamma_n\)得\(a_n=2^{2-\frac{1}{n}}\)
故\(\displaystyle\lim_{n\to\infty}a_n=4\)