發新話題
打印

108中科實中 雙語部

引用:
原帖由 satsuki931000 於 2019-4-27 22:51 發表
第一題
剛好今天考雄女有類似的題目XD
4954
4955
借題發問確認一下有關填充一的想法:

(1)有沒有利用對稱的矩陣做法?
從幾何觀念去處理,將L1的點對角平分線做對稱就會變換到L2上,只是兩直線不過原點,對稱矩陣有辦法寫成如題目中單一個A矩陣嗎?

(2)如果兩直線交於原點,則A有無限多解,對嗎?
我的想法是最基本的用角平分線做鏡射就有兩種,如果先把L1上的點伸縮a倍,再做鏡射,一樣滿足L1落在L2。
伸縮跟鏡射可以合併成一個\(a_{2\times 2}\) 所以A有無限多解。

(3)如果(2)是正確的,那如何驗證原本題目為唯一解??

[ 本帖最後由 jackyxul4 於 2020-2-23 14:51 編輯 ]
千金難買早知道,萬般無奈想不到

TOP

這樣計算應該是最簡便的

[ 本帖最後由 jackyxul4 於 2020-5-10 13:49 編輯 ]

附件

773121FD-7750-4A7F-90B0-8E82FC6B5DDA.jpeg (172 KB)

2020-5-10 13:49

773121FD-7750-4A7F-90B0-8E82FC6B5DDA.jpeg

千金難買早知道,萬般無奈想不到

TOP

回復 21# jackyxul4 的帖子

(1) 無法寫出矩陣 A

(2) 若兩直線過原點,的確有無限多個矩陣 A

(3) 原題直線未過原點,只有唯一解

TOP

回復 2# bugmens 的帖子

已知直角三角形的斜邊長與其中一股長之和為9,則此直角三角形面積的最大值為____

請問各位先進,這一題要怎麼算?此帖給的連結好像沒有這一題。謝謝!

TOP

回復 24# 克勞棣 的帖子

第2題
設兩股長分別是x、y,斜邊長9-x
易知\({{y}^{2}}+9x+9x=81\),再用算幾

TOP

今天才寫這份考古題
發現第5題應該錯了,答案的\(-5\sqrt{2}\),代入原題會造成有理指數的底數為負...
若題目改成\(\sqrt[3]{x+7}-\sqrt[3]{x-7}=2\)就沒問題了

TOP

想請教第十題

各位老師們好~想問第十題該如何下手解決呢?
謝謝大家~

TOP

回復 27# Lyndagm 的帖子

求\(\displaystyle \lim_{n\to\infty}\frac{\left(\frac{1}{2n}\right)^p+\left(\frac{2}{2n}\right)^p+\ldots+\left(\frac{2n}{2n}\right)^p}
{\left(\frac{1}{2}+\frac{1}{2n}\right)^p+\left(\frac{1}{2}+\frac{2}{2n}\right)^p+\ldots+\left(\frac{1}{2}+\frac{n}{2n}\right)^p}\)之值\((p>0)\)   
[解答]
切片切的順手就好的,還是喜歡把範圍限在0到1

原式\( \displaystyle=2\lim_{n\to\infty}\frac{\displaystyle\frac{1}{2n}\sum\limits_{k=1}^{2n}\left(\frac{k}{2n}\right)^p}{\displaystyle\frac{1}{n}\sum\limits_{k=1}^{n}\left(\frac{1}{2}+\frac{k}{2n}\right)^p}=2\times\frac{\displaystyle\int_0^1x^pdx}{\displaystyle\int_0^1\left(\frac{1}{2}+\frac{x}{2}\right)^pdx}=\frac{2^{p+1}}{2^{p+1}-1} \)

111.2.14補充
105鳳山高中,https://math.pro/db/viewthread.php?tid=2511&page=2#pid15490

TOP

回復 28# BambooLotus 的帖子

感謝您~~
我再好好練習

TOP

請教第4題

老師們好,
想請教一下第四題能夠怎麼討論比較有系統呢:由0與1所形成項數為25的數列中,首項末項皆為0,0不相鄰、1沒有三個連續。
有嘗試著以幾個「110」來討論,還是覺得很混亂想請教更高明的想法。

TOP

發新話題