補充填充9、請教計算1
補充填充9
亦可利用第二類斯特靈數(Stirling numbers of the second kind)
以\( S(n,k) \)表示將\( n \)個相異物分成\( k \)堆(不能有空堆)的方法數
則所求即為\( S(9,1)+ S(9,2) + S(9,3)=1+255 +3025 \)
而計算方式是用遞迴\( S(n+1,k)=kS(n,k)+S(n,k-1) \)
寫成類似巴斯卡三角形的形式,推出需要的項
1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 ...
1 63 301 ...
1 127 966 ...
1 255 3025 ...
請教計算1
設函數\( f(x) \)滿足\(x^2 f(x)=\frac{3}{5}x^5+\cdots+\int_0^x tf(t)dt \),且\( \cdots \)
我明白可以利用微積分基本定理(F.T.C)解出\( f(x) \)
可是,題目敘述為「函數\( f(x) \cdots \)」,而未說是「多項式函數」或者「可微分函數」
那麼,直接視為可微分開始操作,是否有不嚴謹之處?
我的想法是,或許題目應該直接說是「多項式函數」
我遇到這類問題都會有如此顧慮,想請教老師們的看法!
[ 本帖最後由 呆呆右 於 2021-4-28 21:04 編輯 ]