計算 6(1)
硬是寫一個
爛證明,畫圖觀察,先想像 \( \angle DGC = 120^\circ \),如果要用相似三角形證明此,會是哪個三角形與其相似呢?找到之後,再來湊相似條件
不妨假設 \( \overline{DE}=1, \overline{EC}=r \), 則 \( \overline{BC}=\overline{CD}=\overline{DA}=1+r \)。
由三角形 \( \triangle ADE\sim\triangle FCE \),可得 \( \overline{CF}=(1+r)r \)
\( \triangle FDC \) 中,由餘弦定理可得 \( \overline{DF}=\sqrt{(1+r)^{2}+(1+r)^{2}r^{2}+r(1+r)^{2}}=(1+r)\sqrt{1+r+r^{2}} \)。
\( \triangle FDC \) 被直線 \( \overrightarrow{BE} \) 所截,由孟氏定理有 \( \displaystyle \frac{\overline{FG}} {\overline{GD}}\cdot\frac{\overline{DE}}{\overline{EC}}\cdot\frac{\overline{CB}}{\overline{BF}}=1
\Rightarrow\frac{\overline{FG}}{\overline{GD}}=r(r+1)\Rightarrow\overline{DG}=\frac{1}{r^{2}+r+1}\overline{DF}=\frac{1+r}{\sqrt{r^{2}+r+1}} \)
\( \displaystyle \frac{\overline{DG}}{\overline{DC}}=\frac{1}{\sqrt{r^{2}+r+1}}, \frac{\overline{DC}}{\overline{DF}}=\frac{1}{\sqrt{1+r+r^{2}}} \),又 \( \triangle CDG \) 和 \( \triangle FDC \) 共用 \( \angle D \),故兩三角形相似(SAS)
因此 \( \angle DGC=\angle DCF=120^{\circ} \),故 \( \angle DGC \) 與 \( \angle DBC \) 互補,因此四點共圓。
要是真的這樣做的話,考試根本做不出來吧。至於有沒有好方法,就請其它高手出手吧!
[
本帖最後由 tsusy 於 2014-6-4 12:00 AM 編輯 ]