回復 13# yuhui 的帖子
第一題的解若我沒有遺漏其他的細節部分,
a(x-1)x(x+1) 這一類的解對於所有的a 代入都滿足題意,
所以我想是的
第二題的部分考慮如下:
先觀察原方程式解\(\tan \alpha ,tan\beta \)滿足
\[\tan \alpha +\tan \beta =9,\tan \alpha \tan \beta =1\], 看出\(\tan \alpha >0,\tan \beta >0\).
故可知道所有的解會落在區間\((0,\frac{\pi }{2})\)跟\((\pi ,\frac{3}{2}\pi )\)內,
先觀察根在\((0,\frac{\pi }{2})\)的情況
此時\(\tan \alpha \)唯一對應1個\(\alpha \), \(\tan \beta \)唯一對應1個\(\beta \)
由 \(\tan \alpha \tan \beta =1\) 可知道此時 \(\alpha +\beta =\frac{\pi }{2}\)
由周期函數的特性知在\((\pi ,\frac{3}{2}\pi )\)的根為\(\pi +\alpha ,\pi +\beta \)
故所有的根之和為\(\alpha +\beta +(\pi +\alpha )+(\pi +\beta )=3\pi \)
希望能幫到你解惑