在\(1,2,\ldots,96\)的直線排列排列\((a_1,a_2,\ldots,a_{96})\)中,滿足條件\((*)\)的排列共有
個?
\((*)\):恰有一個\(i \in \{\;1,2,\ldots,95 \}\;\),使得\(\cases{a_1<a_2<\ldots<a_i\cr a_i>a_{i+1}\cr a_{i+1}<a_{i+2}<\ldots<a_{96}}\)成立。
[解答]
可以換個方式想^^
題目的意思可以想成:現在有前段\(A\)和後段\(B\)
1, 2 , 3, ..., 96每個數字都能自由選擇要進入\(A\)或\(B\),進入後就自動由小至大排好
總共有\(2^{96}\)種方法數,但這當中包含了違背題意的方法,那就是
1, 2, 3, ..., 96從小到大先排好,從這97個間隔中任選一間隔給他一刀兩斷下去,前面為\(A\)區,後面為\(B\)區
故要扣掉上述這97種方法
113.5.16補充
在\(1,2,\ldots,2023\)這2023個數字的直線排列中\((a_1,a_2,\ldots,a_{2023})\)中,滿足下列條件的排列有
個。
排列條件:恰有一個\(i\in \{\;1,2,\ldots,2023 \}\;\),使得\(\cases{a_1<a_2<\ldots<a_i\cr a_i>a_{i+1}\cr a_{i+1}<a_{i+2}<\ldots<a_{2023}}\)
(112竹東高中,
https://math.pro/db/viewthread.php?tid=3758&page=1#pid25199)