發新話題
打印

101國立陽明高中

推到噗浪
推到臉書
Sorry
請問[填充3]廣義柯西要如何湊數字呢?
還是想不出來如何組合

TOP

TOP

回復 12# thepiano 的帖子

數字組合的想法是來自於[4,9]=36的關係嗎?
謝謝您提供的解法

TOP

填充4慢慢數我一下就亂掉了

不知道有沒有可以分開討論的辦法

找到美夢成真 thepiano 的解了

不容易阿...

[ 本帖最後由 simon112266 於 2013-4-19 12:38 AM 編輯 ]

TOP

回復 2# 老王 的帖子

第七題,只能慢慢討論是嗎?我目前只想到慢慢討論各種情況。

TOP

填充第 7 題
若送的那杯是 30 元的,那要花 150元
若送的那杯是 25 元的,那最少要花 25 * 5 = 125 元
故送的那杯是 20 元的

30x + 25y + 20z = 110 + 20
6x + 5y + 4z = 26
又 x + y + z = 6 (x,y,z 是非負整數)

由 y 必為 0 或 2 或 4
很快可找到 (x,y,z) = (1,0,5) or (0,2,4)

所求 = 2 * 6 + 10 * 5 = 62

TOP

回復 15# shingjay176 的帖子

我的做法跟鋼琴老師一樣。
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

請問填充第三題的廣義柯西該如何配。謝謝

TOP

回復 18# leo790124 的帖子

TOP

引用:
原帖由 cellistlu 於 2013-4-9 20:07 發表
Sorry
請問[填充3]廣義柯西要如何湊數字呢?
還是想不出來如何組合
3.
設\(x\)、\(y\)、\(z\)均為正數,且\(36x+9y+4z=49\),求\(\root 3 \of{x}+\root 3 \of{y+7}+\root 3 \of{z+26}\)的最大值為   
[解答]
根據廣義的柯西不等式\(a_1,a_2,a_3,b_1,b_2,b_3,c_1,c_2,c_3 \ge 0\)都是非負實數
則必\( (a_1^3+a_2^3+a_3^3)(b_1^3+b_2^3+b_3^3)(c_1^3+c_2^3+c_3^3)\ge (a_1b_1c_1+a_2b_2c_2+a_3b_3c_3)^3 \)
僅當\(a_1:b_1:c_1=a_2:b_2:c_2=a_3:b_3:c_3=\root 3 \of A:\root 3 \of B:\root 3 \of C\)時等號成立
其中\(a_1^3+a_2^3+a_3^3=A\),\(b_1^3+b_2^3+b_3^3=B\),\(c_1^3+c_2^3+c_3^3=C\)。
http://www3.cnsh.mlc.edu.tw/~mat ... equality_3-2-2_.pdf

\( \displaystyle [36x+9(y+7)+4(z+26)] \left( \frac{1}{4}+\frac{2}{4}+\frac{3}{4} \right) \left( \frac{1}{9}+\frac{2}{9}+\frac{3}{9} \right)\ge (\root 3 \of x+\root 3 \of{y+7}+\root 3 \of{z+26})^3 \)
thepiano的係數\( \displaystyle \left( \frac{1}{4}+\frac{2}{4}+\frac{3}{4} \right) \left( \frac{1}{9}+\frac{2}{9}+\frac{3}{9} \right) \)就是從等號成立時的條件找出來的

假設原來係數不知道
\(  \displaystyle [36x+9(y+7)+4(z+26)] (b_1^3+b_2^3+b_3^3) (c_1^3+c_2^3+c_3^3) \ge (\root 3 \of x+\root 3 \of{y+7}+\root 3 \of{z+26})^3 \)
\( \root 3 \of{36x}\cdot b_1 \cdot c_1=\root 3 \of x \),得到\( \displaystyle b_1 \cdot c_1=\frac{1}{\root 3 \of{36}} \)…(1)
\( \root 3 \of{9(y+7)}\cdot b_2 \cdot c_2=\root 3 \of {y+7} \),得到\( \displaystyle b_2 \cdot c_2=\frac{1}{\root 3 \of 9} \)…(2)
\( \root 3 \of{4(z+26)}\cdot b_3 \cdot c_3=\root 3 \of {z+26} \),得到\( \displaystyle b_3 \cdot c_3=\frac{1}{\root 3 \of 4} \)…(3)

等號成立時
\( \root 3 \of{36x}:b_1:c_1 = \root 3 \of{9(y+7)}:b_2:c_2 = \root 3 \of{4(z+26)}:b_3:c_3=\root 3 \of{216}:\root 3 \of{b_1^3+b_2^3+b_2^3}:\root 3 \of{c_1^3+c_2^3+c_2^3} \)…(4)

利用(1)(2)(3)式替換
\( \displaystyle \root 3 \of{36x}:\frac{1}{\root 3 \of{36}c_1}:c_1 =\root 3 \of{9(y+7)}:\frac{1}{\root 3 \of{9}c_2}:c_2 =\root 3 \of{4(z+26)}:\frac{1}{\root 3 \of{4}c_3}:c_3 \)

\(  \displaystyle \frac{\root 3 \of{36x}}{c_1}:\frac{1}{\root 3 \of{36}c_1^2}:1 =\frac{\root 3 \of{9(y+7)}}{c_2}:\frac{1}{\root 3 \of{9}c_2^2}:1 =\frac{\root 3 \of{4(z+26)}}{c_3}:\frac{1}{\root 3 \of{4}c_3^2}:1 \)

\( \displaystyle \frac{1}{\root 3 \of{36}c_1^2}=\frac{1}{\root 3 \of{9}c_2^2}=\frac{1}{\root 3 \of{4}c_3^2}=t^2 \)

\( \displaystyle c_1=\frac{1}{\root 3 \of 6 t} \),\( \displaystyle c_2=\frac{1}{\root 3 \of 3 t} \),\( \displaystyle c_3=\frac{1}{\root 3 \of 2 t} \)

利用(1)(2)(3)式替換
\( \displaystyle b_1=\frac{t}{\root 3 \of 6} \),\( \displaystyle b_2=\frac{t}{\root 3 \of 3} \),\( \displaystyle b_3=\frac{t}{\root 3 \of 2} \),

代入(4)式
\( \displaystyle \root 3 \of{36x}:\frac{t}{\root 3 \of 6}:\frac{1}{\root 3 \of 6 t} = \root 3 \of{9(y+7)}:\frac{t}{\root 3 \of 3}:\frac{1}{\root 3 \of 3 t} = \root 3 \of{4(z+26)}:\frac{t}{\root 3 \of 2}:\frac{1}{\root 3 \of 2 t}=\root 3 \of{216}:\root 3 \of{\frac{t^3}{6}+\frac{t^3}{3}+\frac{t^3}{2}}:\root 3 \of{\frac{1}{6t^3}+\frac{1}{3t^3}+\frac{1}{2t^3}} \)

\( \displaystyle \root 3 \of{216x}:t:\frac{1}{t}=\root 3 \of{27(y+7)}:t:\frac{1}{t}=\root 3 \of{8(z+26)}:t:\frac{1}{t}=6:t:\frac{1}{t} \)

\( \root 3 \of{216x}=6 \),得到\(x=1\)
\( \root 3 \of{27(y+7)}=6 \),得到\(y=1\)
\( \root 3 \of{8(z+26)}=6 \),得到\(z=1\)

取\( \displaystyle t=\root 3 \of{\frac{3}{2}} \)
\( \displaystyle b_1=\root 3 \of{\frac{1}{4}},b_2=\root 3 \of{\frac{2}{4}},b_3=\root 3 \of{\frac{3}{4}} \),\( \displaystyle c_1=\root 3 \of{\frac{1}{9}},c_2=\root 3 \of{\frac{2}{9}},c_3=\root 3 \of{\frac{3}{9}} \)
就是thepiano的係數\( \displaystyle \left( \frac{1}{4}+\frac{2}{4}+\frac{3}{4} \right)\left( \frac{1}{9}+\frac{2}{9}+\frac{3}{9} \right) \)

或者取\( t=1 \)
\( \displaystyle b_1=\root 3 \of{\frac{1}{6}},b_2=\root 3 \of{\frac{1}{3}},b_3=\root 3 \of{\frac{1}{2}} \),\( \displaystyle c_1=\root 3 \of{\frac{1}{6}},c_2=\root 3 \of{\frac{1}{3}},c_3=\root 3 \of{\frac{1}{2}} \)
係數就變成\( \displaystyle \left( \frac{1}{6}+\frac{1}{3}+\frac{1}{2} \right)\left( \frac{1}{6}+\frac{1}{3}+\frac{1}{2} \right) \)

但無論\(t\)值為多少
\( \displaystyle [36x+9(y+7)+4(z+26)]\left( \frac{t^3}{6}+\frac{t^3}{3}+\frac{t^3}{2} \right)\left( \frac{1}{6t^3}+\frac{1}{3t^3}+\frac{1}{2t^3} \right) \ge (\root 3 \of x+\root 3 \of{y+7}+\root 3 \of{z+26})^3 \)

\( \displaystyle [216](t^3)\left( \frac{1}{t^3} \right) \ge (\root 3 \of x+\root 3 \of{y+7}+\root 3 \of{z+26})^3 \)

\( 6 \ge \root 3 \of x+\root 3 \of{y+7}+\root 3 \of{z+26} \)

最大值都是6

TOP

發新話題