33 1234
發新話題
打印

100桃園縣現職教師高中聯招

推到噗浪
推到臉書

100桃園縣現職教師高中聯招

題目和選擇題答案,請見附件。

附件

100桃園縣現職教師高中聯招.rar (280.56 KB)

2011-5-14 12:56, 下載次數: 3923

TOP

選擇題10.
令\( p=\root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \),則下列敘述何者為真:
(A) p是有理數 (B) p是大於1的實數 (C) p不是整數 (D) \( p=1 \) (E) 以上皆非

試求下列各題:
(1)求\( \root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \)之值。
(2)求使\( x=\root 3 \of {2+\sqrt{5}}+\root 3 \of {2-\sqrt{5}} \)之最低整係數方程式。
(96南港高工)


計算題6.
觀察\( \displaystyle C_0^n+C_1^n+...+C_n^n=(C_0^n+C_3^n+C_6^n+...)+(C_1^n+C_4^n+...)+(C_2^n+C_5^n+...) \)
令\( \displaystyle A=C_0^n+C_3^n+C_6^n+...+C_{3k}^{3k} \),\( \displaystyle B=C_1^{3k}+C_4^{3k}+...+C_{3k-2}^{3k} \),\( k \in N \)
(1)比較A與B的大小關係。
(2)計算A值。

\( \displaystyle C_0^n+C_3^n+C_6^n+...+C_{3m-3}^n+C_{3m}^n=\frac{1}{3}(2^n+2cos \frac{n \pi}{3}) \)
其中3m是不大於n的最大整數。
\( \displaystyle C_1^n+C_4^n+C_7^n+...+C_{3m+1}^n=\frac{1}{3}(2^n+2cos \frac{n-2}{3}\pi) \)
其中3m+1是不大於n的最大整數。
(神奇的複數: 如何利用複數解中學數學難題P23,P24)

101.6.22補充
已知\( n \in N \),且n為6的倍數,則\( C_0^n+C_3^n+C_6^n+...+C_n^n \)之值為
(101松山家商,https://math.pro/db/thread-1425-1-1.html)


設\( \displaystyle (1+x)^{200}=\sum_{k=0}^{200}a_k x^k \),則\( \displaystyle \sum_{k=1}^{66}a_{3k}= \)?
(99安樂高中,https://math.pro/db/thread-1008-1-3.html)

設 C(100,3k),k從0到33之和為S,請問S為幾位正整數?首位數為何?末位數為何?
http://forum.nta.org.tw/oldphpbb2/viewtopic.php?t=39008

[ 本帖最後由 bugmens 於 2012-6-22 06:11 AM 編輯 ]

TOP

請問一下選擇題第2和7題?

TOP

選擇第 2 題:

\(s=1-x-y\leq 0,    t=2x-y-2\leq 0,    x\geq0,    y\geq0\)

先畫出可行解區域,



再以頂點法,將各頂點帶入目標函數 \(f(x,y)=5x-3y\),

可得當 \(x=0,y=2\) 時,\(f(0,2)=6\) 為最大值。

TOP

選擇題第 7 題

其實這個行列式還蠻好算的呀,一堆東西都一樣,很快就可以消出一堆 \(0\),

把該行列式

i、將第一行成以 \(-1\) 倍,加到第二、三、四行,

ii、再將第一列乘以 \(-1,-1,3\) 倍分別加至第二、三、四列,

iii、再延第二行展開得一個三階行列式

iv、再延第一列展開得一個二階行列式

把這個二階行列式展開,得 \(x\) 的一元二次方程式,所以方程式有兩個根。(題目沒說要實數根,所以也不用檢查是否是實數根。)



註:如果一開始改用第一列乘以 \(-1\) 倍加到第二列,似乎也不錯,哈。

TOP

回復 5# weiye 的帖子

我也聽別人跟我說這份考卷比較簡單,但是我反而比較不會算。大概我基礎觀念比較不好吧! ==
另外想請問一下選擇題第5題為什麼不是A。多重選擇題第八題,a為什麼不是0.5?
最後謝謝你一直熱心的回覆我的問題。我都不好意思問了。

TOP

第 8 題:

解答:

\(\displaystyle 3\log_{\frac{1}{3}} x > \log_{\frac{1}{3}} \left(2x-1\right)\)

\(\Leftrightarrow x^3<2x-1\) 且 \(x>0\) 且 \(2x-1>0\)

\(\Leftrightarrow x^3<2x-1\) 且 \(x>0\) 且 \(2x-1>0\)

\(\Leftrightarrow x^3-2x+1<0\) 且 \(x>0\) 且 \(2x-1>0\)

\(\displaystyle \Leftrightarrow \left(x-1\right)\left(x-\frac{-1+\sqrt{5}}{2}\right)\left(x-\frac{-1-\sqrt{5}}{2}\right)<0\) 且 \(x>0\) 且 \(2x-1>0\)

\(\displaystyle \Leftrightarrow \frac{-1+\sqrt{5}}{2}<x<1\)

所以,\(\displaystyle a=\frac{-1+\sqrt{5}}{2}=0.618... , b=1\)


第 5 題:

題目所求為〝在空間中,以原點為球心,\(3\) 為半徑的球〞其中 \(z\geq0\) 的上半球的體積,

所以為 \(\displaystyle \frac{4\pi\cdot 3^3}{3}\cdot \frac{1}{2}=18\pi.\)

TOP

填充三
先求出M的方程式
\(\displaystyle \frac{x-2}{4}=\frac{y-1}{2}=\frac{z}{-1} \)
在M上選取一點P(p,q,r)
P在y軸上的投影點為Q(0,q,0)
那麼繞的時候,就變成以Q為心,將P繞Q一圈形成一個圓
這個圓的方程式可以用到Q的距離=PQ的球,以及過Q且與y軸垂直的平面的交集構成
也就是
\(\displaystyle x^2+(y-q)^2+z^2=p^2+r^2 \)
\(\displaystyle y=q \)
再與
\(\displaystyle \frac{p-2}{4}=\frac{q-1}{2}=\frac{r}{-1} \)
消去p,q,r後得到
\(\displaystyle 4x^2-17y^2+4z^2+2y-1=0 \)

所有用直線繞另一直線的問題,都可以這樣處理。
名豈文章著官應老病休飄飄何所似Essential isolated singularity

TOP

請教選擇4

想請教大家
選擇4該如何算呢
先謝謝大家了~

[ 本帖最後由 milkie1013 於 2011-5-18 11:48 PM 編輯 ]

TOP

回復 9# milkie1013 的帖子

\(\displaystyle q=y, r=-\frac{q-1}{2}=-\frac{y-1}{2}, p=2+4\cdot\left(\frac{q-1}{2}\right)=2+4\cdot\left(\frac{y-1}{2}\right)\)

通通帶入 \(\displaystyle x^2+(y-q)^2+z^2=p^2+r^2 \) 就可以了!

TOP

 33 1234
發新話題