6.
一個實係數三次多項式函數通過\( (101,2012) \)、\( (99,2008) \)、\( (102,2005) \)、\( (103,2016) \)四點,求此函數的切線中,斜率最小的切線所在的直線方程式為?
[解法]
可以用這篇所提到的牛頓差值多項式來解題
https://math.pro/db/viewthread.php?tid=661&page=2#pid5274
將這四點向左平移99,向下平移2008
\( \matrix{f(0) & & f(1) & & f(2) & & f(3) & & f(4) \cr
0 & & y & & 4 & & -3 & & 8 \cr
& y & & 4-y & & -7 & & 11 & \cr
& & 4-2y & & y-11 & & 18 & & \cr
& & & -15+3y & & 29-y & & & } \)
三次多項式在三階差分時會相等
\( -15+3y=29-y \),\( y=11 \)
\( f(n)=0 \times C_0^n+11 \times C_1^n-18 \times C_2^n+18 \times C_3^n=3n^3-18n^2+26n \)
\( f(x)=3x^3-18x^2+26x \)
\( f'(x)=9x^2-36x+26=9(x-2)^2-10 \)
過點\( (2,4) \)有最小斜率-10
平移回去
過點\( (101,2012) \)有最小斜率-10
切線方程式為\( y-2012=-10(x-101) \),\( 10x+y=3022 \)
9.
有一組正整數\( a_2 \),\( a_3 \),\( a_4 \),\( a_5 \),\( a_6 \),\( a_7 \)使得\( \displaystyle \frac{4}{7}=\frac{a_2}{2!}+\frac{a_3}{3!}+\frac{a_4}{4!}+\frac{a_5}{5!}+\frac{a_6}{6!}+\frac{a_7}{7!} \),其中\( 0 \le a_i < i \)(i=2,3,4,5,6,7),求數對\( (a_2,a_3,a_4,a_5,a_6,a_7) \)
有唯一一組整數\( a_2 \),\( a_3 \),\( a_4 \),\( a_5 \),\( a_6 \),\( a_7 \)使得\( \displaystyle \frac{4}{7}=\frac{a_2}{2!}+\frac{a_3}{3!}+\frac{a_4}{4!}+\frac{a_5}{5!}+\frac{a_6}{6!}+\frac{a_7}{7!} \),其中\( 0 \le a_i < i \)(i=2,3,4,5,6,7),求\( a_2+a_3+a_4+a_5+a_6+a_7= \)?
(A)8 (B)9 (C)10 (D)11
(97台南縣國中聯招,h ttp://forum.nta.org.tw/examservice/showthread.php?t=50888 連結已失效)
There are unique integers \( a_2,a_3,a_4,a_5,a_6,a_7 \) such that \( \displaystyle \frac{5}{7}=\frac{a_2}{2!}+\frac{a_3}{3!}+\frac{a_4}{4!}+\frac{a_5}{5!}+\frac{a_6}{6!}+\frac{a_7}{7!} \), where \( 0 \le a_i < i \) for i=2,3,4,5,6,7. Find \( a_2+a_3+a_4+a_5+a_6+a_7 \).
(A)8 (B)9 (C)10 (D)11 (E)12
(1999AMC12,
http://www.artofproblemsolving.c ... 82&cid=44&year=1999)
112.6.17補充
若\(n\)為正整數,定義\(n!\)(讀作\(n\)的階乘)為從1到\(n\)的所有正整數之蓮乘積,即\(n!=1\cdot 2\cdot 3\ldots n\),設\(0\le a_k<k\),其中\(a_k\)為整數,已知\( \displaystyle \frac{a_2}{2!}+\frac{a_3}{3!}+\frac{a_4}{4!}+\frac{a_5}{5!}+\frac{a_6}{6!}+\frac{a_7}{7!}=\frac{4}{7} \),求\(a_2+a_3+a_4+a_5+a_6+a_7\)之值。
(建中通訊解題第155期,
http://web2.ck.tp.edu.tw/~mathwe ... 30-15&Itemid=37)
10.
設甲、乙兩袋中,甲袋有1白球1黑球,乙袋有1白球,從甲袋隨機取1球放入乙袋後,再從乙袋隨機取1球放回甲袋,完成這樣的動作稱為一局,試求\(n\)局後甲袋有1白球1黑球的機率?(答案以\(n\)表示)
(105彰化高中,
https://math.pro/db/thread-2492-1-1.html)
(110彰化女中,
https://math.pro/db/thread-3514-1-1.html)
11.
實數a,b滿足\( (a+bi)^{101}=a-bi \)(其中\( i=\sqrt{-1} \)),則數對\( (a,b) \)有組解
Find the number of ordered pairs of real numbers \( (a,b) \) such that \( (a+bi)^{2002}=a-bi \).
(A)1001 (B)1002 (C)2001 (D)2002 (E)2004
(2002AMC12,
https://artofproblemsolving.com/ ... Problems/Problem_24)
13.
將十次多項式\( (x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7)(x+8)(x+9)(x+10) \)展開後得\( x^{10}+55x^9+a_8x^8+a_7x^7+...+10! \),若\( a_8=55M \),\( a_7=55^2 N \),其中M、N為正整數,求數對\( (M,N)= \)?
thepiano所提供的解法
http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&p=7448#p7437
但這個公式是我在2008年在ptt數學版看到的,想不到過了這麼多年這篇文章終於派上用場,請參閱附加檔案
15.
四邊形ABCD,\( \overline{AB}=14 \)、\( \overline{BC}=9 \)、\( \overline{CD}=7 \)、\( \overline{DA}=12 \),求四邊形ABCD的所有內切圓中,面積最大者為
Consider all quadrilaterals ABCD such that \( \overline{AB}=14 \), \( \overline{BC}=9 \), \( \overline{CD}=8 \), \( \overline{DA}=12 \). What is the radius of the largest possible circle that fits inside or on the boundary of such a quadrilateral?
(2011AMC12A,
https://artofproblemsolving.com/ ... Problems/Problem_24)
(2011中文版AMC12,
https://math.pro/db/thread-1080-1-1.html)
112.6.13補充
若四邊形\(ABCD\)中,\(\overline{AB}=8\)、\(\overline{BC}=15\)、\(\overline{CD}=17\)、\(\overline{DA}=10\),則四邊形\(ABCD\)的內切圓面積的最大值為
。
(112大直高中,
https://math.pro/db/thread-3759-1-1.html)
計算題2.
設\( f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 \in Z[x] \),若\( a_n \),\( a_0 \),\( f(1) \)均為奇數,試證:方程式\( f(x)=0 \)沒有有理根
(88台中一中高一期末考試題,h ttp://web.tcfsh.tc.edu.tw/jflai/math5/rc/T88113.pdf 連結已失效)