1.
\( \displaystyle \frac{4^{\frac{1}{1001}}}{4^{\frac{1}{1001}}+2}+\frac{4^{\frac{2}{1001}}}{4^{\frac{2}{1001}}+2}+...+\frac{4^{\frac{1000}{1001}}}{4^{\frac{1000}{1001}}+2} \)
\( \displaystyle \frac{\pi^{\frac{1}{99}}}{\pi^{\frac{1}{99}}+\sqrt{\pi}}+\frac{\pi^{\frac{2}{99}}}{\pi^{\frac{2}{99}}+\sqrt{\pi}}+\frac{\pi^{\frac{3}{99}}}{\pi^{\frac{3}{99}}+\sqrt{\pi}}+...+\frac{\pi^{\frac{98}{99}}}{\pi^{\frac{98}{99}}+\sqrt{\pi}} \)
(95台中高農)
\( \displaystyle \frac{9^{\frac{1}{1001}}}{9^{\frac{1}{1001}}+3}+\frac{9^{\frac{2}{1001}}}{9^{\frac{2}{1001}}+3}+...+\frac{9^{\frac{1000}{1001}}}{9^{\frac{1000}{1001}}+3}+ \)
(99高雄市高中聯招,
https://math.pro/db/thread-975-1-1.html)
計算與證明
5.
設\( x_1,x_2,...,x_n \)都是正數,試證\( \displaystyle \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+...+\frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1}\ge x_1+x_2+...+x_n \)。
設\( a_1,a_2,...,a_n \)皆為正數,求證:\( \displaystyle \sum_{k=1}^n a_k \le \frac{a_1^2}{a_2}+\frac{a_2^2}{a_3}+...+\frac{a_n^2}{a_1} \)
(94高中數學能力競賽 台南區筆試一試題,h ttp://www.math.nuk.edu.tw/senpe ... _High_Tainan_01.pdf 連結已失效)
110.8.15補充
\(\displaystyle \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+\frac{x_3^2}{x_1}\ge x_1+x_2+x_3\),\((x_1,x_2,x_3>0)\)
(97楊梅高中)
101.6.19補充
設\( x_1 \),\( x_2 \),…,\( x_n \)都是正數且\( n \ge 2 \),試分別利用算幾不等式與數學歸納法兩種方法證明:
\( \displaystyle \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+\frac{x_3^2}{x_4}+……+\frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1}\ge x_1+x_2+…+x_n \)
(101中正高中,
https://math.pro/db/thread-1422-1-1.html)