回復 22# acc10033 的帖子
填6. 樓上 thepiano 大的方法,算是使用中線定理的結果
這類的題目,考古題裡也出現了不少
100中科實中:P 為球面 \( S:\,(x-1)^{2}+(y-2)^{2}+z^{2}=4 \) 上的動點,\( A(3,4,0)、B(3,3,2) \) 為球面外兩點,求 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最大值。
100南港高工:設 \( A(-2,1,3),\, B(0,3,-3) \),P 為直線 \( L:\,\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-2}{1} \) 上一點,求 \( \overline{AP}^{2}+\overline{BP}^{2} \) 有最小值時,此時 P 點的坐標為 _____ 。
100彰化藝術暨田中高中:空間中有三個點 \( A(-1,2,5), B(-2,1,2), P(0,b,c) \),則 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最小值為 _____。
100文華高中代理:設 \( A(4,3,2), B(2,1,4) \),點 P 在平面 \( E:\, x-2y-2z=-1 \) 上移動,則 \( \overline{PA}^{2}+\overline{PB}^{2} \) 的最小值為 _____ 。
[ 本帖最後由 tsusy 於 2014-5-25 09:20 AM 編輯 ]