題目出處
https://math.pro/db/thread-857-1-1.html

假設a,b是實數來解題,只是\( \overline{z_1 z_2} \)不曉得是相乘取共軛複數還是\( z_1 , z_2 \)在複數平面的距離


設定實部在前,虛部在後
(%i) powerdisp:true;
(%o) true
設定z1為√3/2*a+(a+1)i
(%2) z1:sqrt(3)/2*a+(a+1)*%i;
(%o2) \( \frac{\sqrt{3}a}{2}+%i(1+a) \)
設定z2為-3√3b+(b+2)i
(%i3) z2:-3*sqrt(3)*b+(b+2)*%i;
(%o3) \( -3^{3/2}b+%i(2+b) \)
將3z1^2+z2^2展開
(%i4) expand(3*z1^2+z2^2);
(%o4) \( \displaystyle -7-6a+3^{3/2}%i a-\frac{3a^2}{4}+3^{3/2}%ia^2-4b-4 \cdot 3^{3/2}%i b+26b^2-2 \cdot 3^{3/2}%i b^2 \)
將實部和虛部分開
(%i5) realpart(%o4)=0;imagpart(%o4)=0;
(%o5) \( -7-6a-\frac{3a^2}{4}-4b+26b^2=0 \)
(%o6) \( 3^{3/2}+3^{3/2}a^2-4 \cdot 3^{3/2}b-2 \cdot 3^{3/2}b^2=0 \)
(%i7) ratsimp(%o5*4);ratsimp(%o6/3^(3/2));
(%o7) \( -28-24a-3a^2-16b+104b^2=0 \)
(%o8) \( a+a^2-4b-2b^2=0 \)
得到a的解析式
(%i9) solve(%o7+%o8*3,a);
(%o9) \( \displaystyle [a=\frac{-4-4b+14b^2}{3}] \)
代回%o8,得到b的答案
(%i10) ev(%o8,%o9);factor(%);
(%o10) \( \displaystyle -4b-2b^2+\frac{-4-4b+14b^2}{3}+\frac{(-4-4b+14b^2)^2}{9}=0 \)
(%o11) \( \displaystyle \frac{4(-1+b)(-1+7b)(1+4b+7b^2)}{9}=0 \)
代回%o9,得到a的答案
(%i12) ev(%o9,b=1);ev(%o9,b=1/7);
(%o12) \( [a=2] \)
(%o13) \( [a=\frac{10}{7}] \)
或者直接用solve解%o7,%o8得a,b兩組答案
(%i14) solve([%o7,%o8],[a,b]);
(%o14) \( \displaystyle[[a=2,b=1],[a=\frac{10}{7},b=\frac{1}{7}]] \)
代回%o2,%o3,得到z1,z2兩組答案
(%i15) ev([%o2,%o3],%o14[1]);
(%o15) \( [\sqrt{3}+3%i,-3^{3/2}+3 % i] \)
(%i16) ev([%o2,%o3],%o14[2]);
(%o16) \( \displaystyle [-\frac{5 \sqrt{3}}{7}-\frac{3%i}{7},-\frac{3^{3/2}}{7}+\frac{15 %i}{7}] \)


[
本帖最後由 bugmens 於 2009-9-16 11:06 AM 編輯 ]