1.
在滿足\(11x^2-16xy+11y^2=1\)的實數數對\((x,y)\)中,\(x^2+y^2\)的最大可能值為何?
設x,y為實數,且滿足\( x^2+xy+y^2=6 \),若\( x^2+y^2 \)的最大值為M,最小值為m,試求M+m=?
(A) 10 (B) 12 (C) 14 (D) 16
(100全國高中聯招,
https://math.pro/db/viewthread.php?tid=1163&page=1#pid3807)
4.
在三角形\(ABC\)中,已知\(3cosA+5sinB=6\),\(3sinA+5cosB=-1\),則\(sinC=\)?
在三角形\(ABC\)中,\(5sinA+6cosB=7\),\(6sinB+5cosA=4\),則\(sinC=\)?
(97高中數學能力競賽第二區筆試二試題,
https://math.pro/db/thread-919-1-1.html)
7.
不等式\(|\;x+y|\;+|\;x+2y|\;+|\;2x+y|\;\le 8\)在\(xy-\)平面上所表示區域面積為?
滿足\( |\; x |\;+|\; y |\;+|\; x+y-1 |\; = 1 \)的所有點\( (x,y) \)在坐標平面上所形成的區域面積為
。
(102松山工農,
https://math.pro/db/viewthread.php?tid=1655&page=1#pid8768)
坐標平面上,不等式\( |\; x |\;+|\; y |\;+|\; x+y |\; \le 2 \)所圍成之區域面積為
。
(104鳳山高中,
https://math.pro/db/thread-2244-1-1.html)
9.
已知一正三角形內有一點\(P\),\(P\)點到三頂點的距離分別為3、4、5,則此正三角形面積為何?
若△ABC為一正三角形,且在此三角形內部中有一點P使得\( \overline{AP}=3 \),\( \overline{BP}=4 \),\( \overline{CP}=5 \),試問此正三角形之邊長為何?
(2008TRML團體賽)
10.
用1、2、3、4這四數字排成長度為5的字串,其中1出現偶數次的字串有多少個?
(例如:22311就是其中一個,22334也是)
[提示]
\(f(n)=\frac{1}{2}(4^n+2^n)\),\(f(5)=\frac{1}{2}(4^5+2^5)=528\)
求\(0,1,2,3\)所組成的\(n-\)序列含偶數個0的序列數。
(97中山大學雙週一題,
https://math.pro/db/thread-626-1-1.html)